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Abstract

We analyze the structure of bilateral communication links among consumers in virtual communities

by a game-theoretic model of network formation. First, link specificity is incorporated, meaning

that the more direct links somebody has to maintain with others, the less she is able to specify her

attention per link, so that the value of her links decreases. Second, a distinction is made between

the social and informational value from communication, where informational value is transferable

via indirect links, whereas social value is not. We characterize the set of pairwise stable structures

in the case with only social value to indicate the separate impact of link specificity and demonstrate

that it includes a wide range of non-standard architectures under large link specificity and particular

combinations of fully connected components under low link specificity. In the case with both social

and informational value, the joint effect of link specificity and value transferability is shown to

reduce the pairwise stable set to particular fragmented architectures under large link specificity or

rather to the complete network under small link specificity.

JEL Classification: A14, C79, D85, M31

Keywords: Consumers, Virtual Communities, Bilateral Communication Links, Social vs. Infor-

mational Value, Specificity, Transferability, Network Formation, Game Theory



1 Introduction

Websites such as www.saabnet.com, www.ediets.com/community/, and www.healthboards.com al-

low a growing number of consumers to easily communicate with like-minded individuals based

on shared interests around for example products, consumption activities, or personal conditions.

Hence, these communication forums are also increasingly valuable for suppliers, since they are me-

dia for word-of-mouth and consumer co-production (e.g., Algesheimer et al. 2005, Dellarocas 2003,

Hagel and Armstrong 1997).

Compared to the offline world, consumers in these online communities are relatively flexible

to choose their communication partners, since by operating online they are less constrained by

geographical distance and by existing social networks, like family structures (Wellman et al. 1996,

Van Alstyne and Brynjolfsson 2005). The virtual community literature until now has mainly focused

on the question why individuals choose to participate in and contribute to online communities (e.g.,

Bagozzi and Dholakia 2006, McLure Wasko and Faraj 2005) and disregarded the particulars of these

so-called “webs of personal relationships in cyberspace” (Rheingold 2000, p.2)). Yet, structures of

who communicates with whom are distinguishing empirical phenomena (e.g., Holme et al. 2004,

Fisher et al. 2006, Trier 2008) and can determine important outcome variables such as the extent

to which value is shared throughout the network and how it is distributed (e.g., Granovetter 2005,

Ren et al. 2007).

In the current paper we do study the structure of the bilateral communication links within

online consumer communities, to which we therefore refer as Online Consumer Communication

Networks (OCCNs). We model their formation as a game-theoretic network formation process in

which individuals choose to create and maintain links, only if the participants in the link benefit

from doing so, which results in a pairwise stable network structure (Jackson and Wolinsky 1996).

Thus, this paper illustrates how to use the rich game-theoretic literature on network formation (e.g.,

Bala and Goyal 2000, Jackson and Wolinsky 1996) can be used in an applied setting. Recently

studied other settings are firm collaboration (e.g., Goyal and Joshi 2003, Belleflamme and Bloch

2004) and crime networks (Calvó-Armengol and Zenou 2004). We demonstrate that our online

consumer communication setting is an appealing application area.

We introduce the important distinction between social and informational value as motivations

for bilateral exchange decisions. This typology was suggested by the virtual community literature

regarding the question why individuals choose to participate in and contribute to such a community

as a whole (e.g., Dholakia et al. 2004). Social value is related to the fact that individuals may

simply enjoy communicating with others, for example because they find it entertaining or because

they feel it enhances their self-worth (e.g., Hennig-Thurau et al. 2004). Informational value refers

to the fact that consumers may obtain new valuable knowledge from other consumers when they

communicate online. Typically, informational value can be transferred relatively easily to third

parties through indirect links, whereas social value is even more personal and therefore hardly

transferable (without creating a direct link). This transferability is more prominent in online than

in offline communication since information can be more easily forwarded to others (Wellman et al.
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1996).

To analyze the underlying structure of OCCNs we develop a model for the formation of links

that allows us to understand the relative impact of social and informational member orientation.

The model describes how agents benefit and lose from being connected and predicts which stable

network structures emerge when agents myopically maximize the resulting payoff value. Herein,

we incorporate a combination of two important aspects common to OCCNs that has not been

investigated before.

First, our model features link specificity in the sense that the more direct connections an

individual has to maintain with other individuals, the less she is able to specify her attention

per link. Therefore, her additive value per link for others declines and she also derives less additive

value from each link with others (Currarini 2007, Jackson and Wolinsky 1996). We assume that two

connected agents contribute to their bilateral process of communication value creation according

to a standard production function. Higher link specificity implies higher output elasticities in each

bilateral value production process and therefore lower advantage of being connected with several

agents. Unit output elasticities are adopted to model high link specificity whereas constant returns

to scale (i.e., both output elasticities equal 12) reflect low link specificity.

Second, we realize that when the value derived from communication is not only social but also

contains an informational element, this is transferable via indirect links (Bala and Goyal 2000). We

therefore assume that informational value is not only experienced from direct neighbors, but flows

via any path consisting of bilateral communication links connecting two agents.

More specifically, we first deal with the case of communication having social value only (Section

2) in order to illustrate the separate impact of link specificity on network structure. When link

specificity is high, the set of pairwise stable structures is characterized by two simple conditions

and is shown to contain a wide range of non-standard architectures, including highly connected

and “small world” structures, whereas previous models for social and economic network formation

mostly predicted simple architectures like stars and wheels. When link specificity is low, particular

combinations of fully connected components are pairwise stable, similar to the prediction of the

co-author model of Jackson and Wolinsky (1996).

Next, we deal with the case of communication from which both social and informational value

is derived (Section 3) in order to illustrate the impact of value transferability on structure. Under

high link specificity, only structures that consist of disjoint star components of two or three agents

are shown to be pairwise stable. Apparently, the combination of these two features: high link

specificity, which is an example of a negative network externality, and even marginal informational

value transferability, which is an example of a positive network externality (Asvanund et al. 2004),

has a strong fragmentizing effect on the emerging pairwise stable network structures. Under low link

specificity, the opposite effect takes place: already with small informational value transferability,

only the complete network structure is pairwise stable.

Subsequently, Section 4 concludes and offers directions for further research.

2



2 Social value

Since the communication structure of an Online Consumer Communication Network (OCCN) de-

termines value for participants and indirectly also for suppliers, we capture its formation in a

game-theoretical model. Although we believe that OCCNs typically combine social and informa-

tional value aspects in their communication, we first deal with the simpler case in which only social

value is derived from communication. This approach allows us to illustrate the separate impact of

link specificity on communication structure.

Link specificity (Currarini 2007, Jackson and Wolinsky 1996) means that the more direct con-

nections an individual has to maintain with other individuals, the less she is able to specify her

attention per link. Therefore, her additive value per link for others declines and she also derives

less additive value from each link with others. These negative externalities of link formation are

crucial in our communication context, since here no benefits arise from individual contributions as

such. The reason is that communication is only valuable if it is two-sided, thus effort has to be

invested by both sender and receiver.1

In short, the objective of this section is to develop a model for network formation in OCCNs

with only social value from communication. We use the concept of pairwise stability to characterize

the category of stable network structures.2

2.1 Model and stability concept

An OCCN is described by (N, g), where N = {1, ..., n} , n ≥ 3, is a community of agents. A direct
link gi,j between agents i and j in this community (i, j ∈ N ; i 6= j) is interpreted as a virtual

communication relationship between i and j which is established if they both wish the link. These

relationships are expressed by undirected links: for any two agents i and j, gi,j = gj,i. By definition,

gi,i = 0, as agents do not establish communication links with themselves. In this community agents

only derive social value from interaction.

In case of an isolated relationship between two agents, each agent experiences social value

V s > 0 as the outcome of their joint communication production process. However, maintenance

of the communication relationship costs effort: investment of both agents is needed in order to

make the communication specific to their personal circumstances and hence useful. Accordingly,

in case of a structure where two agents do not form an isolated pair, both agents are assumed to

divide their effort equally among all their relationships, as a result of which, in an extreme case, the

potential social communication value is divided proportionally by the number of links that agents

face. However, since agents may have economies of scale in coping with several links, the extent of

link specificity can be smaller.

1 In contrast, in the co-author setting, which has been the subject of investigation in earlier research (Jackson and
Wolinsky 1996), each co-author can write independently as well.

2We do recognize that next to the social value derived from relationships with specific other participants within
an OCCN, participants can also derive social value from the community as a whole (cf. Ren et al. 2007). However,
since this is not expected to influence the specific linking decisions they make, we assume it to be constant in our
model.
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We assume that the contributions of two agents in their bilateral process of communication

value creation are reflected by a Cobb-Douglas production function with both output elasticities

equal to ρ, where ρ = 1 will be considered to constitute the case of high link specificity and ρ = 1
2

coincides with constant returns to scale and will be considered to constitute the case of low link

specificity. Therefore, the total payoff for agent i in link structure g is given by

(1) Πi (g) =

⎧⎨⎩
P

j∈Ni(g)
V s

(μi(g)·μj(g))
ρ if μi (g) > 0

0 if μi (g) = 0,

where gi,j indicates with a 1 or a 0 whether i is directly linked to j or not; Ni (g) is the set of

agents with whom i has a direct link, where agent j is a neighbor of agent i if j ∈ Ni (g), and

μi (g) = |Ni (g)| is the number of neighbors of agent i, which is also referred to as the degree of i ;
V s > 0 denotes the social value that i would derive from communication with j if neither i nor j

were linked to any other agent; and ρ ≤ 1 indicates the level of link specificity.3

For the model thus described we predict which stable network structures emerge by using the

concept of pairwise stability (Jackson and Wolinsky 1996), where a network structure is stable if

no single agent can strictly improve her payoff by deleting one of her direct links and no pair of

agents can both weakly improve their payoffs by creating a direct link while at least one of the two

members strictly improves her payoff by doing so. This solution concept is weak in the sense that it

only assumes stability against deviations of exactly one link (which involves the permission of two

agents in the case of link formation), reflecting a form of myopia. Alternatively, the model could

be analyzed by applying the Nash solution (Bala and Goyal 2000), which assumes stability against

single-agent deviations of more than one link. Because of the extreme coordination problem of the

Nash concept in two-sided link formation and since the weak concept of pairwise stability already

clearly and interestingly constrains the number of network structures that are stable, we choose for

the pairwise stability solution.

In our notation, we have the following definition.

Definition 1 (pairwise stability) The structure g is pairwise stable if for all i, j ∈ N with

gi,j = 1 it holds that

Πi (g) ≥ Πi
¡
g0
¢
and Πj (g) ≥ Πj

¡
g0
¢
,

where g0 is such that g0i,j = 0 and g
0
k,c = gk,c for all {k, c} 6= {i, j}, and for all i, j ∈ N with gi,j = 0

it holds that

Πi (g) > Πi
¡
g0
¢
or

Πj (g) > Πj
¡
g0
¢
or¡

Πi (g) = Πi
¡
g0
¢
and Πj (g) = Πj

¡
g0
¢¢
,

3For comparison: the payoff function in the co-author model of Jackson and Wolinsky (1996) can be written as

Πi (g) = j∈Ni(g)
V s

μi(g)
+ V s

μj(g)
+ V s

μi(g)·μj(g)
.
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where g0 is such that g0i,j = 1 and g0k,c = gk,c for all {k, c} 6= {i, j}.

2.2 Stable structures under high link specificity

First, we evaluate pairwise stability under high link specificity, which we obtain by setting ρ = 1.

We prove that in this case, the class of pairwise stable network structures can be described by two

easily verifiable conditions: (i) they are what we call equal neighbor degree structures, meaning

that everybody has at least one neighbor and every neighbor of agent i has the same degree, and

(ii) there is at most a difference of one between the degrees of agents in the same component.

Definition 2 (equal neighbor degree structure) A structure g is an equal neighbor degree

structure when it holds for each agent i that μi (g) ≥ 1 and for all agents j, j0 ∈ Ni (g) that

μj (g) = μj0 (g). Here we adopt the following notation: the own degree of agent i is denoted by di

and her neighbors’ degree by ei.

Definition 3 (path) A path in g connecting i and j is a sequence of agents k1, . . . , km ∈ N for

whom it holds that gi,k1 = gk1,k2 = ... = gkm−1,km = gkm,j = 1.

Definition 4 (component) A component c in g is a structure among a set of agents C ⊆ N for

whom it holds that for all i, j ∈ C, i 6= j, there exists a path in c connecting i and j, and for any

i ∈ C and j ∈ N, gi,j = 1 implies ci,j = 1.

Definition 5 (star) A structure g is a star if it has exactly n− 1 links and there exists an agent
j for whom it holds that gj,i = 1 for all i 6= j. Similarly, a component c is a star if it has exactly

|C|− 1 links and it contains an agent j for whom it holds that gj,i = 1 for any other i ∈ C. Agent

j is called the center agent whereas the other agents are the periphery agents of the star.

Example 6 A structure consisting of star components is an equal neighbor degree structure.

Example 7 The structure given in Figure 1 is an equal neighbor degree structure.

Figure 1: An equal neighbor degree structure

5



Before providing the main result in Proposition 9, we first derive Lemma 8.

Lemma 8 When ρ = 1, a structure is pairwise stable if and only if it is an equal neighbor degree

structure where it holds for each not directly linked pair of agents i, j that

(2) ei ≤ dj or ej ≤ di or (ei = dj + 1 and ej = di + 1) .

Proof. (⇐=) Assume that g is an equal neighbor degree structure where for each not directly
linked pair of agents i, j condition (2) is satisfied. The payoff of an agent i as expressed in equation

(1) can be written as

Πi (g) =
P

j∈Ni(g)

V s

μi(g)μj(g)
= di

V s

diei
= V s

ei
,

so i does not want to delete a link, for then her payoff would reduce to zero if di = 1, whereas if

di > 1 it would remain equal:

(di − 1) V s

(di−1)ei =
V s

ei
.

Moreover, no link between any pair of agents i, j is created if it makes either i or j strictly worse

off or both of them equally well off. Therefore, no link is created if

V s

ei
> di

V s

(di+1)ei
+ V s

(di+1)(dj+1)
or(3)

V s

ej
> dj

V s

(dj+1)ej
+ V s

(di+1)(dj+1)
or(4) ³

V s

ei
= di

V s

(di+1)ei
+ V s

(di+1)(dj+1)
and V s

ej
= dj

V s

(dj+1)ej
+ V s

(di+1)(dj+1)

´
.(5)

The following shows that ei ≤ dj implies (3):

ei ≤ dj =⇒ ei + di(dj + 1) < (di + 1)(dj + 1) =⇒ di(dj+1)+ei
(di+1)(dj+1)ei

< 1
ei
.

Analogously, it can be shown that ej ≤ di implies (4), and (ei = dj + 1) and (ej = di + 1) implies

(5). Therefore, g is pairwise stable.

( =⇒ ) Assume that the structure g is pairwise stable. First, suppose that there is an agent i for

whom it holds that μi (g) = 0. Then her payoff would strictly improve from a link with some other

agent k. It is obvious that also k ’s payoff would strictly increase if μk (g) = 0, which contradicts

pairwise stability, so consider the case where μk (g) ≥ 1. The payoff of k without this link equals

P
j∈Nk(g)

V s

μk(g)·μj(g)
= V s

μk(g)

Ã P
j∈Nk(g)

1
μj(g)

!
,
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whereas by linking with i it would become

P
j∈Nk(g)

V s

(μk(g)+1)·μj(g)
+ V s

(μk(g)+1)·1
= V s

(μk(g)+1)

Ã P
j∈Nk(g)

1
μj(g)

+ 1

!

≥ V s

μk(g)

Ã P
j∈Nk(g)

1
μj(g)

!
.

The inequality follows from the observation that the expression before the inequality equals V s

times the average of the terms 1/μj(g) and 1, the expression after the inequality is equal to V s

times the average of the terms 1/μj(g), and that 1 ≥ 1/μj(g) for all j ∈ Nk(g). This contradicts

pairwise stability of g. It follows that μi (g) ≥ 1 for all i ∈ N .

Secondly, suppose that for some i it does not hold that μj (g) is constant for all j ∈ Ni (g).

Then there is an agent k ∈ Ni (g) such that

μk (g) >
j∈Ni(g)

μj(g)

μi(g)
.

The payoff for i is given by

P
j∈Ni(g)

V s

μi(g)·μj(g)
= V s

μi(g)

P
j∈Ni(g)

1
μj(g)

,

whereas by deleting the link with k, the payoff for i would become

P
j∈Ni(g)

V s

(μi(g)−1)·μj(g)
− V s

(μi(g)−1)·μk(g)
= V s

(μi(g)−1)

Ã P
j∈Ni(g)

1
μj(g)

− 1
μk(g)

!
> V s

μi(g)

P
j∈Ni(g)

1
μj(g)

,

where the last inequality follows immediately from the interpretation of the last two terms as V s

times an average of numbers 1/μj(g). This contradicts pairwise stability, so μj (g) = μj0 (g) for all

j, j0 ∈ Ni (g). We have shown that a pairwise stable structure is an equal neighbor degree structure.

Finally, suppose that there exists a not directly linked pair i, j for which condition (2) is not

satisfied, implying

(6) ei ≥ dj + 1 and ej ≥ di + 1 and (ei > dj + 1 or ej > di + 1) .

Then i and j want to create a link between them, since this would cause the payoff for agent i to

become

di
V s

(di+1)ei
+ V s

(di+1)(dj+1)
≥ di

V s

(di+1)ei
+ V s

(di+1)ei
= V s

ei
,

and for agent j to become

dj
V s

(dj+1)ej
+ V s

(dj+1)(di+1)
≥ dj

V s

(dj+1)ej
+ V s

(dj+1)ej
= V s

ej
,
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where according to the last condition in (6) at least one of the inequality signs is strict. This

contradicts pairwise stability too. Therefore, g is an equal neighbor degree structure with

ei ≤ dj or ej ≤ di or (ei = dj + 1 and ej = di + 1)

for each not directly linked pair of agents i, j.

Condition (2) in Lemma 8 can be further simplified, leading to the following proposition.

Proposition 9 When ρ = 1, a structure is pairwise stable if and only if it is an equal neighbor

degree structure where it holds for each pair of agents k, c in the same component that

(7) |dk − dc| ≤ 1.

Proof. Considering Lemma 8, it is sufficient to show that in an equal neighbor degree structure
condition (2) holds for each not directly linked pair i, j if and only if condition (7) is satisfied for

each pair k, c in the same component.

(⇐=) Assume an equal neighbor degree structure where for each pair k, c in the same component
condition (7) is satisfied. Let i, j be any not directly linked pair. If ei ≤ dj , condition (2) is satisfied.

If not, then ei > dj and we can derive by applying condition (7) twice that

ej ≤ dj + 1 ≤ ei ≤ di + 1.

If ej ≤ di, condition (2) is satisfied. If not, then ej = di + 1 and condition (2) is satisfied if it also

holds that ei = dj + 1. Suppose not, then ei ≥ dj + 2 and we can derive by applying condition (7)

that

ei ≥ dj + 2 ≥ (ej − 1) + 2 = di + 2,

which contradicts condition (7). Therefore, condition (2) is satisfied.

( =⇒ ) Assume an equal neighbor degree structure where for each not directly linked pair i, j

condition (2) is satisfied. Let k, c be any pair in the same component, so there exists at least one

path between k and c. Assume that the total number of agents on any of these paths is odd. Due

to the equal neighbor degree structure it holds that dk = dc, so condition (7) is satisfied.

Assume that the total number of agents on all of these paths is even. We consider three cases.

(i) Nk (g) \ {c} = ∅ and Nl (g) \ {k} = ∅. It follows that the component consists of k and c only,
so condition (7) trivially holds.

(ii) Nk (g) \ {c} 6= ∅ and Nl (g) \ {k} 6= ∅. Consider m ∈ Nk (g) \ {c}. Due to the equal neighbor
degree structure it holds that

dk = em = ec and ek = dm = dc.

8



Since c and m are not directly linked, by condition (2) we have

dk = ec ≤ dm = dc or dk = em ≤ dc or (dk = ec = dm + 1 = dc + 1 and dk = em = dc + 1) ,

so dk ≤ dc + 1. By the same argument, using some n ∈ Nc (g) \ {k}, we find dc ≤ dk + 1.

Consequently, condition (7) is satisfied.

(iii) (Without loss of generality) Nk (g) \ {c} = ∅ and Nl (g) \ {k} 6= ∅. Since k is connected to c,
we have Nk (g) = {c}, dk = 1, k ∈ Nc (g), and dc ≥ 2. As in case (ii), using some m ∈ Nc (g) \ {k} ,
it follows that dc ≤ dk + 1 = 2. Therefore, it holds that dc = 2. Due to the equal neighbor degree

structure we find dm = dk = 1. We have shown that g is a three-agent star. Clearly, condition (7)

holds.

The following examples illustrate the wide range of structures thus proven to be pairwise stable

in the social value case.

Definition 10 (complete structure) A structure g is complete if all agents are connected, so

for all i, j ∈ N it holds that gi,j = 1.

Definition 11 (wheel structure) A structure g is a wheel if it has exactly n links and there

exists a sequence of different agents k1, ..., kn ∈ N for whom it holds that gk1,k2 = gk2,k3 = ... =

gkn−1,kn = gkn,k1 = 1.

Definition 12 (regular structure) A structure g is regular if it exists of one component and for
each agent i ∈ N it holds that di = d.

Corollary 13 When ρ = 1, the complete, wheel, or any regular structure is pairwise stable, for it is
an equal neighbor degree structure where it holds for each pair of agents k, c in the single component

that

|dk − dc| = 0 ≤ 1.

Example 14 A non-regular structure that is pairwise stable under ρ = 1 is given in Figure 2.

Example 15 A structure consisting of multiple components that is pairwise stable under ρ = 1 is
given in Figure 3.

Example 16 A “small world” is a structure with local clusters of highly interlinked agents together
with agents that link the various clusters. As a consequence, although most agents are not directly

connected, every agent is indirectly linked to every other agent by a relatively small number of

steps. A “small world” structure that is pairwise stable under ρ = 1 is given in Figure 4.

Note that this wide set of stable structures includes complex real-life architectures (e.g., Dodds

et al. 2003), whereas previous models for social and economic network formation mostly predicted

simple architectures like stars and wheels (e.g., Bala and Goyal 2000, Goyal and Vega-Redondo

2007).

9



Figure 2: A non-regular pairwise stable structure

Figure 3: A multiple-component pairwise stable structure
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Figure 4: A “small world” pairwise stable structure

2.3 Stable structures under low link specificity

For low link specificity obtained by setting ρ = 1
2 , we show that particular combinations of fully con-

nected components are pairwise stable, similar to the prediction of the co-author model of Jackson

and Wolinsky (1996) that a pairwise stable structure can be partitioned into fully intraconnected

components, each of which has a different number of members: if mc1 is the number of members

of one such component and mc2 is the next largest size, then mc1 > (mc2)
2.

Proposition 17 When ρ = 1
2 , a structure consisting of fully connected components, each of which

has a different number of members: if mc1 is the number of members of one such component and

mc2 > 1 is the next largest size, then mc1 ≥ 4mc2 − 2, is pairwise stable.

Proof. Assume that structure g consists of fully connected components of different size. Let mc1

be the number of agents in such a component and mc2 in the next largest one. No member of either

of these components wants to delete a link, for the current payoff for such an agent is V s, whereas

deleting a link would reduce it to 0 when mc = 2 or to

mc−2√
(mc−2)(mc−1)

V s

when mc ≥ 3. Let i be an agent in the component with mc2 members and k an agent in the

mc1-sized component. Creating a link with k would change i ’s payoff toÃ
mc2−1

(mc2−1)mc2

+ 1√
mc1mc2

!
V s,

which is not more than her current payoff V s when

mc1 ≥ 1

(√mc2−
√
mc2−1)

2 ,

11



which can be rewritten as mc1 ≥ 4mc2 − 2 since mc1 and mc2 are integers. Therefore, under this

condition g is pairwise stable.

Notice that the set of pairwise stable structures described in Proposition 17 includes the category

of pairwise stable structures in the co-author model of Jackson and Wolinsky (1996) (when n 6= 7),
whereas it is included in the category of pairwise stable structures under high link specificity (ρ = 1).

3 Informational as well as social value

This section introduces the case in which both social and informational value is derived from com-

munication in OCCNs. Thus, we can illustrate the impact of value transferability on communication

structure along with the effect of link specificity. Value transferability (Bala and Goyal 2000) means

that value from communication is not only derived by direct neighbors, but can also be transferred

via indirect links. More specifically, we make a distinction between social and informational value

derived from communication, where only informational value is transferable through the network.

For example, social value from communication between two Saab enthusiasts only exists for the

two communication partners, but informational value (e.g., from a solution to a technical problem)

can exist for others in the network. After proposing a model for network formation in this setting,

the pairwise stable network structures are characterized again. We show that the set of stable

structures is much more limited in range than in the purely social value setting.

3.1 Model

An OCCN is described by (N, g), where N = {1, . . . , n} , n ≥ 3, is a community of agents . A
direct link gi,j between agents i and j in this community (i, j ∈ N ; i 6= j) can be interpreted as a

virtual communication relationship between i and j which is established if they both wish the link.

These relationships are expressed by undirected links: for any two agents i and j, gi,j = gj,i, and

gi,i = 0.

In case of an isolated relationship between two agents where interaction only has social value,

each agent experiences social value V s > 0 as the outcome of their joint communication production

process. In case of an isolated relationship between two agents where interaction only has infor-

mational value, each agent experiences informational value V i > 0 as the outcome of their joint

communication production process. In general, agents are assumed to give relative attention to

informational and social value in the proportions α and 1− α respectively, where α is assumed to

be constant satisfying 0 < α ≤ 1.
Again we assume that the contributions of two agents in their bilateral process of communication

value creation are reflected by a Cobb-Douglas production function with both output elasticities

equal to ρ, where ρ = 1 will be considered to constitute the case of high link specificity and ρ = 1
2

coincides with constant returns to scale and will be considered to constitute the case of low link

specificity.

12



Moreover, informational value is, without any decay except for this effort division, transferred

to third parties through indirect links (paths of links), whereas social value is not transferable. This

is due to the fact that in the direct communication production process of two agents, any of them

can use the informational value that she acquired during the bilateral communication creation with

other neighbors. Consequently, agent j0 experiences not only first-step informational payoff from

her direct neighbors:

Π1ij0(g) =
P

j1∈Nj0 (g)

V i

(μj0 (g)·μj1(g))
ρ ,

which is similar to the social payoff in equation (1), but also second-step informational payoff:

Π2ij0(g) =
P

j1∈Nj0
(g)

1

(μj0(g)·μj1(g))
ρ

P
j2∈Nj1

(g)\{j0}

V i

(μj1 (g)·μj2(g))
ρ ,

third-step informational payoff:

Π3ij0(g) =
P

j1∈Nj0(g)

1

(μj0(g)·μj1(g))
ρ

P
j2∈Nj1 (g)\{j0}

1

(μj1 (g)·μj2(g))
ρ

P
j3∈Nj2 (g)\{j1,j0}

V i

(μj2 (g)·μj3 (g))
ρ ,

and so forth, thus the overall informational payoff for agent j0 is equal to

Πij0(g) =
n−1P
q=1
Πqij0(g)

= V i
n−1P
q=1

qQ
r=1

P
jr∈Njr−1(g)\{jr−2,jr−3,...,j0}

1

μjr−1(g)·μjr (g)
ρ

=
n−1P
q=1

qP
r=1

P
jr∈Njr−1 (g)\{jr−2,jr−3,...,j0}

V i

μj0 (g)·
Qq−1

b=1
μjb

(g)
2
·μjq (g)

ρ .

Therefore, the total payoff for agent i in link structure g is given by

(8) Πi (g) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α
P

j∈N̄i(g)

P
p∈Pi,j(g)

V i

μi(g)·
Q

k∈p̆(μk(g))
2·μj(g)

ρ

+(1− α)
P

j∈Ni(g)
V s

(μi(g)·μj(g))
ρ

if μi (g) > 0

0 if μi (g) = 0,

where α is the proportion of communication through each link in the community that concerns

product-, service- or firm-related information and 1−α is the proportion of communication through
each link in the community that concerns social interaction; N̄i (g) is the set of agents with whom

i has either a direct or an indirect link; Pi,j (g) is the set of paths between i and j, and p̆ is the

set of agents on path p between i and j ; and V i > 0 denotes the informational value that i would

derive from communication with j if neither i nor j were linked to any other agent and interaction

would only have informational value, and V s > 0 denotes the social value that i would derive from

communication with j if neither i nor j were linked to any other agent and interaction would only

13



have social value.

For the model thus described we again use the concept of pairwise stability (Jackson and

Wolinsky 1996) to predict which network structures are stable.

3.2 Stable structures under high link specificity

For ρ = 1 and 0 < α < 1,4 it can be proven that the pairwise stable structures consist of small

star components. First consider the following lemma in which it is shown that the star structure

becomes unstable when there are more than three agents.

Lemma 18 When ρ = 1 and 0 < α < 1, the star structure is pairwise stable if and only if n = 3.

Proof. From the star structure, it is not beneficial for any of the periphery agents to delete her

link with the center agent as then her payoff will be zero. For the center agent, deleting a link with

any of the periphery agents will provide her with the same payoff. To verify this result, it is crucial

to observe that the center agent is not involved in any indirect links to other agents. Periphery

agent i does not create a link with another periphery agent i’ if and only if this would not decrease

her payoff:

αV i
³

1
n−1 +

n−2
(n−1)2

´
+ (1− α)V s 1

n−1 ≥

αV i

⎛⎜⎜⎝ 1
2(n−1) +

1
8(n−1)| {z }

a

+ 1
4 +

1
4(n−1)2| {z }
b

+ n−3
2(n−1)2 +

n−3
8(n−1)2| {z }

c

⎞⎟⎟⎠+ (1− α)V s
³

1
2(n−1) +

1
4

´
⇐⇒ αV i (4− n) + (1− α)V s (3− n) ≥ 0 ⇐⇒ n ≤ 3,

where the informational payoff elements on the righthandside of the first inequality are derived

from (a) the center agent, (b) agent i’, and (c) the other periphery agents consecutively, as a link

between i and i’ would create a cycle. Since we assumed societies to consist of at least three agents,

it holds that n = 3.

Now the following proposition can be proven.

Proposition 19 When ρ = 1 and 0 < α < 1, a structure is pairwise stable if and only if it consists

of disjoint star components of two or three agents.

Proof. (⇐=) It is not beneficial for any of the periphery agents in a star component to delete
her single link as then her payoff will be zero. Equivalently, for the center agent in a three-agent

component, deleting a link with any of the two periphery agents is not beneficial as it will provide

her with the same payoff.
4The results in the case where the value derived from communication is only informational (α = 1) slightly differ

from those in this mixed case (0 < α < 1). Specifically, it appears that structures also containing one four-agent star
component can be pairwise stable.
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Link creation between the periphery agents of one three-agent star is eliminated by Lemma 18.

Therefore, we only have to examine the following cases (a)− (f):

pair agent center agent

of 3-agent star

periphery agent

of 3-agent star

pair agent
(a) (b) (c)

center agent

of 3-agent star
x (d) (e)

periphery agent

of 3-agent star
x x (f)

For each of these cases, it can be proven by evaluating the payoffs with and without the link that

no link is created: after forming a link in case (a), a pair agent would get payoff:

αV i
¡
1
2 +

1
4 +

1
8

¢
+ (1− α)V s

¡
1
2 +

1
4

¢
≤ αV i + (1− α)V s,

after forming a link in case (b), the pair agent would get payoff:

αV i
¡
1
2 +

1
6 +

1
18 +

1
18

¢
+ (1− α)V s

¡
1
2 +

1
6

¢
< αV i + (1− α)V s,

after forming a link in case (c), the pair agent would get payoff:

αV i
¡
1
2 +

1
4 +

1
16 +

1
32

¢
+ (1− α)V s

¡
1
2 +

1
4

¢
< αV i + (1− α)V s,

after forming a link in case (d), a center agent would get payoff:

αV i
¡
1
3 +

1
3 +

1
9 +

1
27 +

1
27

¢
+ (1− α)V s

¡
1
3 +

1
3 +

1
9

¢
≤ αV i

¡
1
2 +

1
2

¢
+ (1− α)V s

¡
1
2 +

1
2

¢
,

after forming a link in case (e), the center agent would get payoff:

αV i
¡
1
3 +

1
3 +

1
6 +

1
24 +

1
48

¢
+ (1− α)V s

¡
1
3 +

1
3 +

1
6

¢
< αV i

¡
1
2 +

1
2

¢
+ (1− α)V s

¡
1
2 +

1
2

¢
,

and after forming a link in case (f), a periphery agent would get payoff

αV i
¡
1
4 +

1
4 +

1
8 +

1
16 +

1
32

¢
+ (1− α)V s

¡
1
4 +

1
4

¢
≤ αV i

¡
1
2 +

1
4

¢
+ (1− α)V s 12 .
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(=⇒) For this part of the proof, we need some extra notation. The payoff function in (8) can
be rewritten as

Πi (g) =
1

μi(g)

P
j∈Ni(g)

Ti,j (g) ,

where Ti,j (g) is the total payoff that j transmits to i via her direct link with i. Formally,

Ti,j (g) = α

⎛⎝ V i

μj(g)
+

P
(j0∈N̄j(g)\{i})

P
(p∈Pj,j0(g):i/∈p̆)

V i

μj0(g)·(μj(g))
2·
Q

k∈p̆(μk(g))
2

⎞⎠
+(1− α) V s

μj(g)
.

Assume that g is a pairwise stable structure. Let i be an agent in g and k ∈ Ni (g) be such that

Ti,k (g) = min
j∈Ni(g)

Ti,j (g) .

Suppose that there exists an agent c ∈ Ni (g) for whom it holds that

Ti,c (g) > Ti,k (g) .

Deleting the link between i and k results in structure g0, where it holds that

Ti,j
¡
g0
¢
≥ Ti,j (g) , ∀j ∈ Ni

¡
g0
¢
,

since k, to whom j might be (in)directly linked, has one costly direct link less, so more informational

value might flow from j to i via k. The payoff for i then becomes

Πi
¡
g0
¢
= 1

μi(g)−1
P

j∈Ni(g0)
Ti,j

¡
g0
¢
> 1

μi(g)

P
j∈Ni(g)

Ti,j (g) = Πi (g) ,

which contradicts pairwise stability of g. It follows that

(9) Ti,j (g) = Ti,j0 (g) , ∀j, j0 ∈ Ni (g) .

Next, suppose that g contains a cycle, meaning that there exists a sequence of agents k1, ..., kn ∈
N for whom it holds that gk1,k2 = gk2,k3 = ... = gkn−1,kn = gkn,k1 = 1. Let i be an agent in this

cycle. Deleting the link with one of i’s neighbors in the cycle, say k, results in g0, where it holds

for the other neighbor of i in the cycle, say m, that

Ti,m
¡
g0
¢
> Ti,m (g) ,
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since k, to whom m is (in)directly linked, has one costly direct link less, so more informational

value flows from k to i via m. Moreover,

Ti,j
¡
g0
¢
≥ Ti,j (g) , ∀j ∈ Ni

¡
g0
¢
.

The payoff for i then becomes

Πi
¡
g0
¢
= 1

μi(g)−1
P

j∈Ni(g0)
Ti,j

¡
g0
¢
> 1

μi(g)−1
P

j∈Ni(g0)
Ti,j (g)

= 1
μi(g)

P
j∈Ni(g)

Ti,j (g) = Πi (g) ,

where the second equality follows from equation (9). This implies that g is not pairwise stable,

leading to a contradiction. We have therefore shown that g does not contain any cycle.

Suppose that g consists of components that are not stars. Since we have already shown that

g contains no cycles, all components of g are trees. In a tree the number of links is one less than

the number of agents. Moreover, in a tree there is a unique path between any two agents. A tree

that is not a star contains an agent, say i, with a neighbor h that only has i as a neighbor, and,

moreover, i is directly linked to an agent j who has another neighbor different from i. According

to equation (9) it holds that

Ti,h(g) = Ti,j(g).

Since h has only one neighbor, i, it follows that

Ti,h(g) = αV i + (1− α)V s.

We now evaluate Ti,j(g) and show it is smaller than Ti,h(g). Think of N̄h(g) as a tree with h as top

agent. For players k, k0 ∈ N̄h(g), k 6= k0, player k0 is a subordinate of k, denoted k0 ∈ S̄(k), if k is

on the unique path from h to k0. Player k0 is a direct subordinate of k, denoted k0 ∈ S(k), if k0 is a

subordinate of k and there is a link between k and k0. We write

Ti,j(g) = αT ii,j(g) + (1− α)T si,j(g),

where

(10) T si,j(g) =
V s

μj(g)
≤ V s

2 ,

and

T ii,j(g) =
V i

μj(g)
+

P
k∈S̄(j)

V i

μk(g)(μj(g))
2
Q

k0∈p̆j,k
(μk0(g))

2
,

where pj,k is the unique path between j and k.
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Consider k ∈ S̄(i). We define the informational payoff that k receives from its subordinates by

U ik(g) =
1

μk(g)

P
k0∈S(k)

T ik,k0(g),

where T ik,k0(g) is defined analogously to T
i
i,j(g). We obtain a recursive relation by observing that

T ik,k0(g) =
V i+U i

k0(g)

μk0(g)
.

We show by induction that

(11) U ik(g) ≤ V i(μk(g)− 1),

from which it follows that

T ik,k0(g) ≤
V i+V i(μk0(g)−1)

μk0(g)
= V i,

and, consequently,

(12) T ii,j(g) ≤ V i.

Let K0 be the set of agents without subordinates. For m ≥ 1, let Km be the set of agents

with all subordinates in K0 ∪ · · · ∪Km−1. Let m0 be the smallest integer for which j ∈ Km0
. First

consider an agent k in K0, the set of agents without subordinates. Then U ik(g) = 0 = V i(μk(g)−1),
so (11) is satisfied.

Suppose that (11) holds for agents in Km, m < m0. Consider an agent k ∈ Km+1.

U ik(g) = 1
μk(g)

P
k0∈S(k)

T ik,k0(g) ≤ 1
μk(g)

P
k0∈S(k)

³
V i+V i(μk0(g)−1)

μk0(g)

´
= μk(g)−1

μk(g)
V i ≤ 1

2V
i(μk(g)− 1),

so (11) holds for all k ∈ S̄(i).

Combining (10) and (12) implies Ti,j(g) < Ti,h(g), a contradiction to equation (9), so g consists

of star components only.

The proof of Lemma 18 implies that these stars have at most three agents. “Stars” of a single

agent cannot be part of g, for it is always strictly beneficial for this single agent to create a link

to the center agent of another star, whereas this center agent is indifferent or improves if she is

isolated too.
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The following table pictures all structures thus proven to be pairwise stable in the case with

both social and informational value from communication and ρ = 1 for n ≤ 6.

n = 3

n = 4

n = 5

n = 6

Comparing these results to the purely social value case, clearly a much smaller range of very frag-

mented structures turns out to be pairwise stable in the mixed case where transferable informational

value also plays a role. Specifically, even with α slightly above zero, regular structures are never

pairwise stable and also the example structures in Figures 2, 3, and 4 are not stable anymore. This

may seem counter-intuitive, since apparently transferability of informational value causes structures

to become more fragmented and therefore less able to transfer information. The intuition behind

this finding is that the link specificity property of communication is now strong enough to prevent

individuals from maintaining many links, because it is strengthened by the transferability of value.

For example, in a wheel structure of three agents, an agent cannot improve (or decrease) her social

payoff by deleting one of her links, but she can improve her informational payoff:

V i

2 +
V i

4 > 2V i

4 + 2V i

16 .

The co-author model of Jackson and Wolinsky (1996) also contained a type of link specificity,

but since it was not combined with value transferability, the resulting stable structures were not

as fragmented. Similarly, the connections model of Jackson and Wolinsky (1996) contained value

transferability, but since it was not combined with link specificity, the resulting structures are not

fragmented at all. Likewise, most studies reveal less fragmented stable structures, e.g. Goyal &

Vega-Redondo (2007) find large star structures in their setting of structural holes. Therefore, our

model can explain real-life phenomena like the evolvement of threads in online communities into

strong reciprocal ties (Fisher et al. 2006).

3.3 Stable structures under low link specificity

For ρ = 1
2 , it is illustrated that already with small informational value transferability, only the

complete network structure is pairwise stable. First we prove the following proposition.
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Proposition 20 When ρ = 1
2 and α = 1, the complete structure is pairwise stable.

Proof. The payoff for an agent in the complete structure is

1 +
n−1P
q=2

Qq

r=2
(n−r)

(n−1)q−1 ,

where q indicates the step level, and if she deletes a link it becomes

1+2(n−2)
√
n−2√
n−1

n−1 +
n−1P
q=3

Qq

r=3
(n−r)

(n−1)q−1
³
1 + n2−5n+q+4√

n−1
√
n−2

´
.

Substracting the latter from the former gives

(13)
n−1P
q=3

µQq

r=3
(n−r)

(n−1)q−1
³
n− 3− n2−5n+q+4√

n−1
√
n−2

´
+

2(n−2)−2(n−2)
√
n−2√
n−1

(n−1)(n−3)

¶
.

We have to prove that (13) is nonnegative. Multiplying by (n− 1), we find that it is sufficient to
show that

n−1P
q=3

µµ
qQ

r=3

n−r
n−1

¶
(n− 3− n2−5n+q+4√

n−1
√
n−2 ) +

2(n−2)
n−3 −

2(n−2)2
(n−3)

√
n−1

√
n−2

¶
≥ 0.

When we define

a(q) =
qQ

r=3

n−r
n−1 ,

b(q) = n− 3− n2−5n+q+4√
n−1

√
n−2 ,

then the first term in (13) is given by
n−1P
q=3

a(q)b(q).

If this term is nonnegative, then we are done since the second minus the third term in (13) is

positive. So suppose the first term is negative.

Notice that a(q) ≥ 0 and b(q) is decreasing in q, so there is q ≥ 3 such that 3 ≤ q < q̄ implies

a(q)b(q) ≥ 0 and q̄ ≤ q ≤ n− 1 implies a(q)b(q) < 0. Since

n−1P
q=3

a(q)b(q) < 0,

we have that
n−1P
q=3

a(q)b(q) >
n−1P
q=3

λ(q)a(q)b(q)

for coefficients λ(q) greater than or equal to 1 and nondecreasing in q. We define

λ(q) =
q−1Q
r=3

n−1
n−r ,
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with λ(3) = 1 by definition. Then our proof is done once we show that

n−1P
q=3

³
n−q
n−1(n− 3−

n2−5n+q+4√
n−1

√
n−2 ) +

2(n−2)
n−3 −

2(n−2)2
(n−3)

√
n−1

√
n−2

´
≥ 0.

It holds that

n−1P
q=3

n−q
n−1(n− 3) = (n−2)(n−3)2

2(n−1) ,

n−1P
q=3

n−q
n−1

n2−5n+4√
n−1

√
n−2 = (n−2)(n−3)(n−4)

2
√
n−1

√
n−2 ,

n−1P
q=3

n−q
n−1

q√
n−1

√
n−2 = n(n−3)(n+2)

2(n−1)
√
n−1

√
n−2 −

2n3−3n2+n−30
6(n−1)

√
n−1

√
n−2 ,

n−1P
q=3

2(n−2)
n−3 −

2(n−2)2
(n−3)

√
n−1

√
n−2 = 2(n− 2)− 2(n−2)2√

n−1
√
n−2 ,

where for the third inequality we use the fact that 12 + 22 + · · ·+ r2 = 1
3r
3 + 1

2r
2 + 1

6r.

After multiplying by 6 and rewriting we obtain the inequality

3n3−12n2+27n−30
n−1 − 3n4−17n3+45n2−73n+54

(n−1)
√
n−1

√
n−2 ≥ 0.

The expression on the left-hand side is greater than

3n3−12n2+27n−30
n−1 − 3n4−17n3+45n2−73n+54

(n−1)(n−8
5
)

.

Cross multiplying, we find that the last expression is greater than or equal to zero if and only if

3n4 − 1645n
3 + 4615n

2 − 7315n+ 48 ≥ 3n
4 − 17n3 + 45n2 − 73n+ 54.

For n ≥ 4, such is clearly the case.

The following example illustrates that already at relatively low α, multi-component structures

(cf. Proposition 17 for α = 0) are not pairwise stable anymore.

Example 21 Assume ρ = 1
2 and consider the structure in Figure 5. When α = 0, the current

payoff for agent i is V s and if she would create a link with agent k it would become 0.99578 · V s.
When α = 1, the payoff for i is V i and with a link to k would become 1.65733·V i. When 0 < α < 1,

the payoff for i is αV i + (1− α)V s and with a link to k would become

α · 1.65733 · V i + (1− α) · 0.99578 · V s,

which is under V i = V s larger than the current payoff if α > 0.0064. Since k is willing to create a

link with i for any α, it holds that this structure in this case is already not pairwise stable anymore

for α > 0.0064.
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Figure 5: A structure that is pairwise stable when ρ = 1
2 and α = 0

4 Discussion

This paper has shown that the structure of bilateral communication links within OCCNs can be

appropriately studied using a model based on the game-theoretic literature of social and economic

network formation. A combination of important aspects common to OCCNs was incorporated that

had not been investigated until now: the negative externality of link specificity and the positive

externality of informational value transferability.

In the case of communication having social value only, illustrating the separate impact of link

specificity on structure, the set of pairwise stable structures was characterized for high link speci-

ficity and shown to include a wide range of non-standard architectures like highly connected and

“small world” structures, whereas previous models for social and economic network formation

mostly predicted simple architectures like stars and wheels. For low link specificity, particular

combinations of fully connected components were proven to be pairwise stable in line with the

co-author model of Jackson and Wolinsky (1996).

In the case of communication from which both social and informational value is derived, illus-

trating the joint impact of link specificity and value transferability on structure, under high link

specificity only structures that consist of disjoint star components of two or three agents were shown

to be pairwise stable. Herewith, we predict much more fragmentation than usually in the literature

about social and economic network formation, where mostly only either of these two features was

included. Under low link specificity, the opposite extreme effect takes place: already with small

informational value transferability, only the complete network structure is pairwise stable.

Further research could focus on the welfare properties of the wide variety of structures discussed

in this paper. In particular, it can be found that the fragmentation under high link specificity as

well as the dense pairwise stable structures under low link specificity are efficient in their own

setting. Also, it may be interesting to consider other link specificity values than the cases ρ = 1
2 , 1

studied here. Especially, it can be found that 12 and 1 are indeed suitable polar cases and that for

intermediate values the famous tension between stability and efficiency (e.g., Jackson and Wolinsky

1996) is re-established.
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Moreover, future research could introduce valuation heterogeneity in the sense that agents

represent different values for their fellow customers or have different opinions on the values of their

fellow customers (e.g., Galeotti et al. 2006). For example, for ρ = 1 and 0 < α < 1, if we assume

a valuation pattern deviating from full homogeneity in the sense that there is one agent j who is

valued differently than all other agents, it can be proven that all pairwise stable structures consist

of small star components and one possibly larger component without cycles containing the differing

agent j but not at the periphery. In particular, this component may be a star component with

agent j at the center.

Another extension of the current model could be to relax the assumption that agents divide

their available effort equally among all their relationships, thus entering the subject of link quality

and dropping the common one-zero formulation of links. As suggested by Goyal (2005), a first step

into this direction would be to introduce a distinction between strong links in which both agents

actively interact with each other, and weak links in which one agent is active and the other is not,

where the passive agent can only access the direct value from her active partner.

Besides, a possible follow-up would be to empirically examine the applicability of the used

payoff function in diverse contexts. The model could be tested experimentally, contributing to an

emerging literature as surveyed by Kosfeld (2004).

Accordingly, we hope that our current work stimulates future research in the appealing area of

OCCNs and the role of balancing social and informational value in these communication networks.
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