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Abstract

We propose an agent-based model to simulate the diffusion of small PV systems among
single- or two-family homes in Italy over the 2006-2026 period. To this end,we explicitly
model the geographical distribution of the agents in order to account for regional differences
across the country. The adoption decision is assumed to be influenced predominantly by
(1) the payback period of the investment, (2) its environmental benefit, (3) the household’s
income, and (4) the influence of communication with other agents. For the estimation of the
payback period, the model considers investment costs, local irradiation levels, governmental
support, earnings from using self-produced electricity vs. buying electricity from the grid,
as well as various administrative fees and maintenance costs. The environmental benefit is
estimated by a proxy for the CO2 emissions saved. The level of the household income is
associated with the specific economic conditions of the region where the agent is located,
as well as the agent’s socio-economic group (age group, level of education, household type).
Finally, the influence of communication is measured by the number of links with other
households that have already adopted a PV system. In each simulation step, the program
dynamically updates the social system and the communication network, while the evolution
of the PV system’s investment costs depend on a one-factor experience curve model that
is based on the exogeneous development of the global installed PV capacity. Our results
show that Italy’s domestic PV installations are already beyond an initial stage of rapid
growth and, though likely to spread further, they will do so at a significantly slower rate of
diffusion.
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1 Introduction

Following the introduction of a governmental incentive program, the Italian photovoltaics

(PV) market has experienced a remarkable growth. Electricity generated by PV systems

increased from 35 GWh in 2006 to 10,796 GWh in 2011, an astounding increment (GSE,

2012a; see also Figure 1 and Table 1). Italy has thus become one of the world’s leading

PV markets, accounting for about 18% of the global installed PV capacity in 2011 (EPIA,

2012).

Nevertheless, the diffusion of PV across Italy has followed a rather peculiar pattern.

The number of installed PV systems is much higher in the north, although the irradiation

level is lower there compared to other regions of the country. In addition, most of the

installed systems in the north belong to private households and are thus characterized by a

small rated power. However, while small-scale PV systems up to 20 kW are overwhelming

in number (88% of the total, as of 2011), they account for only 15.5% of Italy’s installed

PV power (GSE, 2012c, , see also Figure 1). Furthermore, the share of small PV systems

with respect to installed capacity has fallen steadily (from 66% in 2006 to 15.5% in

2011) due to the more recent installation of large PV farms (mostly located in Central

and Southern Italy), a trend that strongly contributed to the PV boom in Italy (GSE,

2012c). As a result, the number, size and electricity generation of PV systems in Italy

are rather unevenly spread across the country.

It is thus relevant to investigate whether the residential PV market will grow further,

or whether the Italian PV market will be dominated in the future by large PV farms. The

objective of this article is to simulate the future diffusion of small residential PV systems

under different conditions. Due to the multitude of factors influencing a household’s

investment decision in favor of an innovative energy technology such as PV, we designed

and implemented an agent-based simulation model (ABM). ABMs provide a suitable

framework to explicitly model the adoption decision process of the members (agents) of a

heterogeneous social system based on their individual preferences, behavioral rules, and

interactions/communications within a social network.

We explicitly model the geographical distribution of the agents in order to account

for the regional differences that have strongly influenced the PV diffusion in Italy. The

investment in a PV system is assumed to depend mainly on (1) the payback period, (2) the

environmental benefit of the investment, (3) the household’s income, and (4) the influence

of communication with other agents. For the estimation of the payback period, the model

considers investment costs, local irradiation levels, feed-in tariffs, earnings from using self-

generated electricity vs. buying electricity from the grid, as well as various administrative

fees and maintenance costs. The environmental benefit of the PV system is estimated via

a proxy for the amount of CO2 saved. The level of the household income is associated

with the specific economic conditions of the region where the agent is located, as well
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Figure 1: Evolution of Italy’s PV market, 2006–2011

Source: GSE (2012c)

Table 1: Evolution of Italy’s electricity generation, 2006–2011

2006 2007 2008 2009 2010 2011

Total electricity generation [TWh] 352.7 354.5 353.6 333.3 342.9 346.4
thereof PV el. generation [GWh] 35 39 193 676 1,906 10,796

Share of RES in total
[%] 15.9 16.0 16.6 18.8 20.1 23.5

electricity generation
Share of PV in total

[%] 0.01 0.01 0.05 0.20 0.56 3.12
electricity generation

Source: GSE (2012a)

as the agent’s socio-economic group (age group, level of education, and household type).

Finally, the influence of communication is measured by the number of links with other

households that have already adopted a PV system. It is assumed that each adopter

communicates predominantly, but not uniquely, with other households that belong to the

same socio-economic group. Furthermore, the likelihood that different groups interact

with each other varies across the categories of agents considered.

Following Schwarz and Ernst (2009), an important contribution to the current litera-

ture on PV adoption and diffusion simulations is the inclusion of adaptive socio-economic

categories to represent heterogeneous household groups with distinctive attitudes toward

adoptions and innovations. The socio-economic groups considered here are based on the

Sinus-Milieus R© categorization developed by the Sinus-Institut (2011).1 In particular, the

1The Sinus-Milieus R© are a registered commercial product of a marketing company that does not
disclose the rules or the questionnaires used to generate these socio-economic characterizations. We
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Table 2: Date of issue, support cap, and reasons for revision of the Conto Energia 1–5

Conto Issue Cap on cumulative PV installed capacity Reason for
Energia update

1 08/2005 100 MW, updated to 500 MW by 2015 Adjustments
2 04/2007 1,200 MW, updated to 3000 MW by 2015 Adjustments
3 01/2011 8,000 MW by 2020 Cap reached
4 06/2011 23,000 MW by 2016, registration required Cap almost reached
5 09/2012 Max + 3,000 MW/a, registration required Still in place

Source: MSE (2005, 2007, 2010, 2011, 2012)

Sinus-Milieu R© paradigm is most relevant for the distribution of the households’ income

and the determination of group-specific social communication networks. In each simu-

lation step, the social system and the communication network are updated dynamically

in order to account for demographic changes and new adopters among the population of

agents.

The remainder of the paper is structured as follows. Section 2 provides a brief in-

troduction to the current Italian PV support policy. Section 3 gives an overview of

the relevant literature concerning the adoption of new technologies, its modeling via

agent-based simulation frameworks, and the inclusion of a social system in the modeling

architecture. Section 4 presents in detail the structure of the ABM. Section 5 describes

the model’s calibration, while section 6 discusses the policy scenarios and the simulation

results. Finally, section 7 delivers the conclusions of the article and highlights strengths

and weaknesses of our analysis.

2 The Italian support scheme for PV systems

The current legal framework for the support of PV systems in Italy is called “Conto Ener-

gia” (CE). The first CE has been issued in August 2005. Since then, the incentive scheme

has been renewed five times with a series of adjustments and changes. An important

characteristic of the CE is that support is granted up to a given amount of total installed

PV power, as shown in Table 2 (MSE, 2005, 2007, 2010, 2011, 2012).2

Each CE guarantees contracts with fixed conditions for 20 years for grid-connected

PV systems with at least 1 kW of peak power. Local electricity providers are required

by law to buy the electricity that is generated by PV systems. Furthermore, governmen-

tal incentives are tax-free. Beginning with CE 2, the government has also reduced the

purchase tax from 20% to 10%.

discuss this aspect in more detail in the conclusion (see section 7).
2Note that in our model we do not account for the PV installation caps, as we consider only a

sub-group of potential adopters and PV systems.
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Figure 2: Stages of the Conto Energia by installed PV installed capacity, 2007–2013

Source: Own illustration, based on GSE (2013b)

Table 3: Incentives paid by the Conto Energia, 2006–2012

Year 2006 2007 2008 2009 2010 2011 2012a

Incentives [million e/a] 1 19 91 304 743 3,835 4,565
Total incentives [million e] 1 20 111 415 1,158 4,993 9,558

a Jan.–Sept. 2012

Source: GSE (2012c)

The CE considers two different support schemes. The first scheme is a net meter-

ing plan (“scambio sul posto”) designed for small PV systems.3 The plan is meant to

favor the direct use of self-produced electricity. Besides a payment for each produced

kWh of electricity, the consumer receives additional rewards for directly consuming the

self-generated energy. With the introduction of CE 4, direct consumption is rewarded

financially, whereas before 2011 consumers received an energy credit. Importantly, energy

that is fed into the grid is bought by the local electricity provider at conditions that are

less advantageous than direct self-consumption.

The second support scheme is available to all PV systems, but it is designed for larger

plants with no or limited direct electricity self-consumption. The electricity produced

is sold to the local energy supplier, for which the CE guarantees an additional feed-in

payment.

In general, the incentives granted are higher for small PV systems. The Feed-in

Tariffs (FiT) increase further for PV systems that are based on innovative technologies

or systems that are integrated into the building. Additional payments or bonuses can also

3The first two versions of the CE limited the maximum peak power for this plan to 20 kW. Beginning
with CE 3, systems up to 200 kW are also accepted.
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be received in the following cases4: the adopter owns an energy-saving home; the adopter

renews his/her roofs because of asbestos; the adopter lives in a small village with up to

5,000 inhabitants; the PV system was produced in Europe; the PV system is located on

a municipal building, in an old industrial area, or in an old garbage dump.

It is important to mention that in each new version of the CE, the FiT were decreased.

Since CE 1 was first issued in 2005, the basic support level has been curtailed from

approximately 0.45 e/kWh in 2006 to 0.20 e/kWh in 2012.5 Besides a reduction

in tax revenues due to cuts in the PV purchase tax and the expenses associated with

administrative tasks, the Italian government has spent e9,558 million for PV incentives

from 2006 to September 2012 (see Table 3). Due to the high costs, Italy introduced a

register for new PV systems with the implementation of CE 4. The register is meant to

put a cap on the amount of support granted to PV systems for each year, whereby small

PV systems (< 20 kW) still enjoy register priority. Similarly, the latest version of the

support scheme (i.e. CE 5) aims at quickly decreasing the level of the feed-in payments,

since grid parity was reached around 2011 and the costs of the support program are high.

The FiT in CE 5 are set to decrease further by approximately 10% every 6 months for 2.5

years, starting in September 2012. Afterwards, the FiT will be reduced every 6 months

by 15%. Figure 2 and Table 3 show the different stages of the CE with respect to the

installed PV capacity and the incentives paid per year.

3 Literature overview

The modeling and forecasting of technology diffusion has been the focus of theoretical

and empirical research since the works of Fourt and Woodlock (1960), Mansfield (1961),

Rogers (1962), Chow (1967), and Bass (1969). The adoption and diffusion of innovations

is determined by four core elements: the characteristics of the innovation, the structure

of the social system where the adoption and diffusion takes place, the communication

channels within the social system, and the time-frame of the innovation-decision process

(Rogers, 2003). A variety of models focusing on one or more of these elements have

been applied to a multitude of research fields and technologies. For an overview, see for

instance Mahajan et al. (2000) and Meade and Islam (2006).

In recent years, agent-based simulation models (ABM) have been widely used to

simulate the inherent complexity of the adoption and diffusion process (Dawid, 2006;

Kiesling et al., 2012). In particular, ABM frameworks replicate the micro-based behavior

of economic actors in order to evaluate and explain meso- and macro-level phenomena.

They enable modelers to ascribe specific characteristics to the agents, who independently

4The individual bonuses lead to an increase in the FiT that may range from 5% to 30%. Note that
the requirements for the award of a bonus have changed over time (MSE, 2005, 2007, 2010, 2011, 2012).

5Here we are referring to the basic FiT for small roof-top PV systems.
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interact within their environment and among each other according to determined rules

(Bonabeau, 2002).

ABM have also been applied to investigate the adoption of various energy technologies

(e.g., Schwoon, 2006; Cantono and Silverberg, 2009; Faber et al., 2010; Zhang and Nuttall,

2011; Zhang et al., 2011; Sorda et al., 2013). However, to the best of our knowledge, in

the recent literature only Zhao et al. (2011) implement an ABM to simulate the diffusion

of PV systems. They evaluate the impact of different governmental incentives, including

the impact of investment credit taxes and feed-in tariffs, on the PV diffusion process in

two regions in the US.

Nevertheless, the factors influencing PV adoption and their modeling have been the

subject of several publications. These can be grouped into three categories: survey-based

analyses (Jager, 2006; Faiers and Neame, 2005; Faiers et al., 2007; Yuan et al., 2011; Zhai

and Williams, 2012), PV diffusion and forecasting models other than ABM (Guidolin and

Mortarino, 2010; Gallo and De Bonis, 2013), and PV grid parity studies (Ayompe et al.,

2010; Yang, 2010; Breyer and Gerlach, 2013).

One may suspect that the fast-decreasing installation costs of PV systems and the

prospect of grid parity PV electricity generation provide strong incentives for the invest-

ment in photovoltaic technology by homeowners. However, the adoption decision is still

strongly influenced by the perceived attributes of the innovation, such as installation

costs, maintenance, complexity, and environmental concerns (Zhai and Williams, 2012).

In addition, the adopter characteristics6 (Faiers and Neame, 2005; Faiers et al., 2007) as

well as the communication network play an important role in the actual diffusion process

(Jager, 2006).

In our model, we try to incorporate these three considerations: the specific attributes

of the PV technology, the attitudes and preferences of the adopters according to their

respective socio-economic groups, as well as the influence of communication among agents.

4 Model description

In our model, we consider small grid-connected PV systems in the 1–20 kW range powered

by crystalline silicon solar cells (silicon solar cells had a 93% share of the Italian market

in 2011; GSE, 2012b). Furthermore, it is assumed that the PV systems are installed on

the roofs of single- or two-family houses7. The ABM framework simultaneously accounts

for the attributes of the PV systems, the attitude of specific adopter groups, and the

6In their study of the adoption of residential PV systems in the UK, Faiers and Neame (2005) and
Faiers et al. (2007) based their questionnaires on Rogers’ (2003) adopter categories with respect to
innovativeness and product characteristics.

7Small PV systems could also be installed on the roofs of larger multi-flat building blocks. However,
the adoption decision would become much more complicated to replicate, as often several house-owners
or groups of families cooperatively decide to make a PV investment.
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Simulation step N
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Agent population of year N-1 Agent population of year N

Changes in
the social system

Changes due to

external influences

Figure 3: Schematic diagram of the step-wise simulation process

Source: Own illustration

communication network thanks to a multi-attribute utility function (Zhao et al., 2011)

weighted by adopter preferences according to different socio-economic classes (Schwarz

and Ernst, 2009).

The ABM has been programmed in MATLAB and simulates the PV diffusion process

on a step-wise yearly basis. Two key components constitute the core structure of the

framework: the agent’s adoption decision and the representation of Italy’s social system.

The decision to invest in a PV system depends on static functions fed with data that,

in some cases, account for changes in the underlying social structure and communication

network. As a result, specific model parameters are updated after each simulation step,

as highlighted in Figure 3. Next, we present in more detail the formulation of the agent’s

behavioral rules (section 4.1), the modeling of socio-economic attributes in Italy (section

4.2), and the agent’s communication network (section 4.3).

4.1 Agent’s adoption behavior

An agent represents a household living in a single- or two-family house. The decision to

invest in a PV system takes place when the utility of the potential adopter surpasses a

certain threshold level. The threshold is determined by comparing the simulation results

with the actual diffusion of the PV system during the calibration of the model (see section

5 for more details). The utility of agent j equals the sum of four weighted partial utilities

8



Agent

Decides whether to invest
in the PV system

Influence factors:
- economic aspect

- ecological aspect

- financial resources
- communication with others
- personal preferences (weights)

Economic utility

Expressed as partial utility
that depends on the payback period

of the PV investment

Influence factors:
- produced amount of electricity
- governmental grant
- electricity price

- investment costs
- yearly operational expenses

Environmental utility

Expressed as partial utility
that depends on the amount of
CO2 emissions saved

Influence factor:
- produced amount of electricity

Income utility

Expressed as partial utility
that depends on the
household’s income

Influence factors:
- region of living
- household type
- age class of the household

- education level of the household

Communication utility

Expressed as partial utility
that depends on the number of
links to other adopters

Influence factors:
- region of living

- agent’s Sinus-Milieu R©

Figure 4: Factors influencing the agent’s adoption-decision process and their representation in
the model

Source: Own illustration

and is calculated as follows:

U(j) = wpp(smj) · upp(j) + wenv(smj) · uenv(j) (1)

+winc(smj) · uinc(j) + wcom(smj) · ucom(j),

where

∑

k
wk(smj) = 1 for k ∈ K : {pp, env, inc, com} and wk(smj), U(j) ∈ [0,1].

The partial utilities u(·) account for the payback period of the investment (upp), the

environmental benefit of investing in a PV system (uenv), the household’s income (uinc),

and the influence of communication with other agents (ucom). Each partial utility is

calculated on the basis of specific influence factors (see Figure 4) and is normalized8 in

order to lie within the [0,1] interval. The weights w(·) assigned to each partial utility

vary according to the agent’s Sinus-Milieu R© (smj) and are determined in the model’s

calibration. Next, we illustrate how each partial utility is calculated.

4.1.1 Economic utility

The estimation of the economic utility of adoption is based on the expected payback

period pp of a specific PV system for agent j. The payback period is then converted

into a linear utility function whose value ranges between 0 and 1. The utility function is

8The total utility of an adopter is defined within the [0,1] interval. As a result, all partial utilities need
to be normalized. In accordance with Zhao et al. (2011), the utility of the payback period is programmed
as a linear function, while all other partial utility functions follow an S-shaped curve, also within the
[0,1] interval.
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calculated as follows:

upp(j) =
max(pp) − pp(j)

max(pp) − min(pp)
=

21 − pp(j)

20
. (2)

In order to ensure that the partial utility arising from the payback period lies within

the [0,1] interval, and given that the payback period is calculated over 20 years (i.e.

the expected useful life of the PV system), the values corresponding to the minimum

(min(pp)) and maximum (max(pp)) payback periods are 1 and 21 years, respectively.

The payback period is determined by the year in which the net present value (NPV)

of the PV system turns from negative to positive. The NPV is defined as the sum of the

discounted cash flows (R(t)) of the PV system, given the initial investment costs (I0) and

the interest rate (i):

NPV = −I0 +
20
∑

t=1

R(t)

(1 + i)t
. (3)

The investment costs are the product of the maximum peak power (PMMP ) and the price

per installed kW of the PV system (pP V ), such that:

I0 = PMMP · pP V (t0) (4)

PMMP = GST C · AP V · ηSC · ηP V . (5)

The peak power of the PV system is computed by the available rooftop area for PV

modules (AP V ), the efficiency of the solar cells (ηSC), the PV system efficiency (ηP V ),

and the irradiation at standard conditions (GST C), which is assumed to equal 1 kW/m2.

The estimation of the system’s NPV at a given time period assumes that the price and

efficiency of the PV system remain constant. Note, however, that in each simulation

step the price per installed kW of the PV system and the cell’s efficiency are exogenously

updated (see also section 6.1) . In addition, the available roof area for PV modules

depends on the type of housing. All other values are kept constant throughout the

simulation.

As shown in eq. (6) below, the cash flow R(t) is composed of five factors. The term

RSave(t, CE) includes all earnings that are generated by directly using the produced elec-

tricity instead of buying it from or selling it to the grid provider. The terms RGov(t, CE),

RAdm(CE), RMain(t), and RDeprec(t) indicate cash flows due to governmental support, ad-

ministrative fees, maintenance and upfront costs, and depreciation allowance payments,

respectively.

R(t) = RSave(t, CE) + RGov(t, CE) − RAdm(CE) − RMain(t) − RDeprec(t). (6)

10



The explicit estimation of the revenues due to electricity savings9 (RSave(t, CE)) is a

function of time t and of the governmental policy in place. As a result, the calculation

of RSave(t, CE) varies across the different formulations of the Conto Energia (CE). For

the CEs 1-4, the savings are computed by considering the electricity grid as a storage

component of the PV system. From the introduction of CE 5 onwards, RSave(t, CE) is

calculated as:

RSave(t, CE 5) = EP V (t) · [xDC · pelec,buy · (1 + τelec,buy)t−1 (7)

+(1 − xDC) · pelec,sell · (1 + τelec,sell)
t−1].

The estimated savings are a function of the produced amount of electricity (EP V (t)), the

share of direct electricity consumption (xDC), and the price of electricity, which varies

depending on whether the consumer is selling it to (pelec,sell) or buying it from the grid

provider (pelec,buy).10 In addition, electricity prices are assumed to grow geometrically at

constant rates (τelec,sell and τelec,buy).11 The first right-hand side term in eq. (7) describes

the cost savings due to direct consumption of the PV-generated electricity. The second

term describes the earnings from selling PV electricity to the local energy provider.12

Importantly, the amount of electricity EP V generated by the system is a function of the

level of irradiation (ESun), of the installed nominal maximum peak power (PMP P ), and

of the predicted PV module abrasion13 (ξAbrasion). Furthermore, the level of irradiation

depends on the region where the house is located, such that:

EP V (t) = ESun · PMP P · (1 − ξAbrasion)t−1. (8)

Besides energy savings, an additional positive cash flow is generated by governmen-

tal support (RGov(t, CE)), which is based on the FiT given by the CE. The amount

of the support is calculated as the sum of three components: a basic payment for the

production of electricity (FiTP rod(CE)), an incentive for direct PV electricity consump-

tion (FiTDC(CE)), and, if applicable, additional bonuses (FiTBon(CE)) that accrue in

special circumstances14. The cash flows associated with governmental support are then

9Electricity may be directly consumed by the owner of the PV system, thus saving part of his/her
electricity bill. The owner then sells to the utility provider the surplus PV electricity that is not used
for self-consumption.

10In general, the amount of money paid by local energy providers is only a fraction of the electricity
price they charge consumers for electricity consumption.

11Since there is no price increase for t = 1, the electricity price grows by the power of t − 1.
12Note that the second term is independent from and additional to the governmental feed-in tariffs.
13Similar to the electricity price, the abrasion increases over time by the power of t − 1.
14For instance, a bonus is paid if the roof of the house is renewed due to asbestos, if the PV system

is located in a village with less than 5,000 inhabitants, or if the PV system consists of components that
were produced in Europe. The individual bonuses lead to increments in the FiT that range from 5% to
30%. In the model, bonuses are assumed to increase the basic FiT by about 5% on average.
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expressed as follows:

RGov(t, CE) = EP V (t) · (FiTP rod(CE) + FiTDC(CE) + FiTBon(CE)) . (9)

The adoption of a PV system also entails a series of negative cash flows. Administra-

tive fees (RAdm(CE)) have to be paid to the provider of the electricity grid and depend

on the specific CE considered, such that:

RAdm(CE) =































30
e

year
for CE 1-3

3
e

kW · year
for CE 4-5.

(10)

Maintenance and upfront costs (RMain(t)) must also be considered. Upfront costs (e.g.,

the consultation of a PV expert/adviser) are paid in the first year of the investment,

while maintenance costs occur yearly. Both expenditures are estimated to be a fraction

of the initial investment costs:

RMain(t) =







(αupfront + αMain) · I0 if t = 1

αMain · I0 otherwise
(11)

Finally, the cash flow includes depreciation allowance payments of the PV system

(RDeprec(t)). The depreciation allowance amounts to a fixed outflow taking place at the

end of every year for 20 years, at which point the remaining value of the fixed asset at

the end of its useful lifetime is zero.

4.1.2 Environmental utility

The partial utility uenv(j) in eq. (1) is meant to capture an agent’s attitude toward

the environmental/ecological advantages associated with the adoption of a PV system.

These attributes could be measured by the amount of CO2 emissions saved; however, for

reasons of simplicity, the partial utility considers only the expected amount of energy

generated by the PV system. In line with Marheineke (2002), we assume that the energy

required to produce a PV system is small in comparison to the amount of “green” energy

it generates. The actual output of the PV system depends on its location and technical

attributes, and the estimated environmental utility is assumed to follow an S-shaped

function, where EP V,tot,j is the expected amount of electricity generated over 20 years

by the PV system of agent j, and ĒP V,tot is the expected average amount of electricity
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Figure 5: Utility function of the environmental benefits associated with the adoption of a PV
system

Source: Own illustration

generated over 20 years by all PV systems, such that:

uenv(j) =

exp

(

EP V,tot,j − ĒP V,tot

1 · 104

)

1 + exp

(

EP V,tot,j − ĒP V,tot

1 · 104

) . (12)

Figure 5 shows the environmental utility function curve and its operational range. The

figure indicates that the environmental utility does not have its minimum at zero. This

is due to the fact that PV systems always save energy when operating. However, the

curve also implies that the agent becomes less responsive to CO2 savings as the amount

of expected electricity generation increases.

4.1.3 Income utility

The partial utility uinc(j) is based on the household’s income, which in turn is determined

by the agent’s region and his/her socio-demographic attributes. In general, it is assumed

that agents with an above-average income are more likely to invest in a PV system. This

consideration is accounted for in the functional representation of an agent’s income utility,

whose S-shaped curve depends on agent j’s income (Nj) and the average income of all

13



agents in the model (N̄), such that:

uinc(j) =

exp

(

Nj − N̄

1 · 103

)

1 + exp

(

Nj − N̄

1 · 103

) . (13)

4.1.4 Communication utility

Finally, the influence of the social communication network on the adoption decision is

represented by the partial utility ucom(j). In the model it is expressed as a function of

agent j’s total number of communication links (Lj,tot) and in relation to the number of

links with actual adopters (Lj,adopter). Since there are no or only a few adopters in the

social system at the beginning of the diffusion process, communication hardly plays a

role initially. The S-shaped communication utility function therefore starts with a value

of about zero and increases as the diffusion process takes place. The partial utility is

estimated by the following expression:

ucom(j) =
exp

(

Lj,adopter − 0.5 · Lj,tot

0.8

)

1 + exp

(

Lj,adopter − 0.5 · Lj,tot

0.8

) . (14)

In the model, it is assumed that the total number of links (to both adopters and non-

adopters) varies according to the Sinus-Milieu R© of the agent (see Figure 6). The resulting

array of functions represented by eq. (14) nonetheless guarantees that each agent, inde-

pendently of his/her Sinus-Milieu R©, has an equal response to a proportional increase in

the number of links to other adopters.15 For a more detailed explanation of the commu-

nication network see also section 4.3.

4.2 Modeling socio-economic attributes in the PV diffusion pro-

cess

Investments in a new technology are related not only to economic considerations, but also

to specific attitudes towards a technology’s attributes (Rogers, 2003). These attitudes are

the product, among other things, of an agent’s socio-economic background and his/her

lifestyle choices.

In the model, the social system is represented by different socio-economic categories.

Each category identifies groups of individuals displaying similarities in their socio-economic

15For instance, consider an agent with six links, three of those links being links to other adopters. The
resulting communication utility is 0.5. An agent with ten links, five of which are to adopters, also has a
communication utility of 0.5.
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behavior and consumption patterns. The social system is thereby characterized by sub-

groups that have common values and attitudes toward work, family, leisure, money, and

consumption. Following Schwarz (2007) and Schwarz and Ernst (2009), we incorporate

these socio-economic groups and their attitudes toward innovative technologies in the

model by referring to Sinus-Milieus R©.

The Sinus-Milieus R© include a wide array of social categories that range from the en-

lightened middle-class (“Borgehsia Illuminata”) to consumers-materialists (“Consumisti

Precari”). Figure 7 shows the eight Sinus-Milieus R© modeled in our study and displays

them as a function of social status and basic values. The model uses freely available

Sinus-Milieu R© data for Italy from 2003 provided by For Sale Italia Advertising Agency

(2004). In addition, the milieus are also associated to the adopter categories defined by

Rogers (2003), as illustrated in Table 4.

The Sinus-Milieu R© structure of the model is created during an initialization phase

that proceeds the first simulation period. In the initialization, the agents/households are

allocated to the different Italian regions and assigned to various categories. Following the

available census statistics (ISTAT, 2012), these categories include six household types, five

age classes and five education levels.16 The model then restricts its focus to agents living

in single- or two-family houses (see Figure 8). At this point, four attributes are assigned

16There is a total of 150 categories spread across the 20 regions considered. Each single category is
formally represented in the model by an object in an array, which makes them easily accessible from
a programming point of view. The individual agents that are assigned to each category are saved as
vectors, which guarantees high computational speed when calculating, for instance, the NPV.

15



Higher

Middle

Lower

Social
Status

Basic
Values

Traditional Moderate Modern

Neo - AchieversBorghesia Illuminata

Progressisti

Edonisti Ribelli

Italia Media

Classe Post

Consumisti Precari

Tradizionali

Tolleranti

Operaria

Conservatori

Ambiziosa

10% 11%

10%
17%

21%

9%

7%

14%

Figure 7: Share of population by Sinus-Milieus R© in Italy, 2003

Source: Own illustration, based on For Sale Italia Advertising Agency (2004)

to each household: the Sinus-Milieu R©, the average income, the electricity consumption

level, and the type of housing (see Figure 9).

The household income is correlated to the agent’s household type, age class, education

level, and region. It is assumed that the average household income can be described by

a logarithmic probability distribution (Statistisches Bundesamt, 2012), whose standard

deviation depends on Italy’s Gini coefficient, which is about 0.337 (OECD, 2011)17.

The energy consumption of an agent depends on the number of household members,

which, in turn, is also associated to the household type. The average number of Italian

household members, as well as the average energy consumption per household, is based

on statistical data (ISTAT, 2012). In contrast, the average number of household members

in each Sinus-Milieu R© rests on own assumptions.

Finally, the housing type is linked to the household’s income. According to Eurostat

(2012), the likelihood that an agent lives in a single-family house is significantly higher if

his income exceeds the Italian median by 60%. The probability increases even further for

17The Gini coefficient is a measure of income inequality within a country. It ranges from 0 (perfect
equality) to 1 (perfect inequality). The Gini coefficient presented here is based on disposable household
income, corrected for household size and deflated by the consumer price index (CPI). Italy displays an
intermediate level of income inequality in comparison to other developed countries. The OECD average
is 0.314 (OECD, 2011), a value between those of Norway (0.256) or Germany (0.295), and those of the
USA (0.378) and Mexico (0.476).

16



Table 4: Sinus-Milieus R© and adopter categories in Italy

Sinus-Milieu R© Adopter categories Reason for assignment

Borghesia Illuminata Innovators, Highest income,
Enlightened Middle Class Early Adopters rational-economical thinking

Neo-Achievers Innovators, Environmental thinking, high income,
Neo-Achievers Early Adopters high knowledge, take risks

Progressisti Tolleranti Early Adopters, Intellectuals, basic ecological
Tolerant Progressists Early Majority and economic thinking

Italia Media Ambiziosa Early Majority, Consider social norms, influenced
Average Middle Class Late Majority by mass media communication

Tradizionali Conservatori Late Majority, Do not take risks,
Traditional Conservatives Laggards adopt only when everyone does

Classe Post Operaria Early Majority, Consider social norms, strongly
Working Class Late Majority influenced by communication

Edonisti Ribelli Early Adopters, See the potential of PV systems
Hedonists Early Majority but do not have money

Consumisti Precari Early Majority, Strongly influenced
Precarious Consumerists Late Majority by peer-to-peer communication

Source: Own assumptions and illustration, based on For Sale Italia Advertising Agency (2004)
and Rogers’ (2003) adopter categories

agents living in two-family homes. It is important to differentiate between housing types,

as they are associated with different roof areas18, which pose a limit to the maximum peak

power of the PV system. Since the average household income is higher in Northern Italy,

more agents live in single-family houses, resulting in a higher than average PV power

per adopter. In Southern Italy there is a higher level of irradiation, but the median

income is lower and fewer people live in single-family houses, so that the average PV

system is smaller. Importantly, by accounting for two housing types the model has more

control over simulation results, thus improving the model’s calibration across the different

regions.

After its creation in the model’s initialization, the social structure is recursively up-

dated at the end of each simulation period. Updating the social structure involves, on

the one hand, the model’s calibration over the 2006–2010 period and, on the other hand,

the implementation of various assumptions about future demographic developments. The

latter include forecasts for the Italian population growth and the number of household

members. The size of each milieu varies over time in accordance with the changes in the

social system. However, the model assumes that the share of each Sinus-Milieu R© relative

18A household in a single-family house has, on average, a larger roof area available for PV modules
than a household living in a two-family house.

17



Initialization All Italian households

20 Italian
regions

5 groups
of regions

Piedmont

North-West

Aosta Valley

Worth-West

Sardinia

Island

6 household
types

Single

aged > 64

Single

aged ≤ 64

Couple

1-2 kids

Couple

3-4 kids

Couples

no kids

Single
parent

1-2 kids

5 age classes
by years 25 - 34 35-44 45-54 55-64 > 64

5 education

levels

Final agent
population

Primary Secondary
Upper

secondary

Post

secondary
Tertiary

Households living in single- and two-family houses

Figure 8: Initialization and structure of the social system in the model

Source: Own illustration

to the total agent populations remains constant from 2010 onwards.19

One last remark must be made before the next section is introduced. Once the social

system is initialized, the model includes about 10 million Italian households as possible

adopters20. Since each agent has several attributes and needs to perform a series of

operations during the innovation-decision process, the model requires a relatively large

computer storage capacity and the simulation time can be long. In order to reduce the

computational effort, the model includes the option to scale the number of agents21, i.e.

one agent may represent several households simultaneously, thereby reducing the number

of potential adopters and speeding up the simulation process. This process may have

implications for the accuracy of the estimations and is discussed in more detail during

the model calibration stage described in section 5.

19While the total number of agents in each milieu may grow, the relative share of each Sinus-Milieu R©

remains constant. This simplification results from a lack of forecasts concerning the future evolution of
Sinus-Milieus R© and is justified by the fact that their share remains almost unvaried during the model’s
calibration over the 2006–2010 period.

20In 2006, Italy had a population of about 59.1 million inhabitants and a total of about 23.9 million
households, 10 million of which are living in one- or two-family houses.

21Each agent has 20 attribute values, and each attribute value requires about 8 bytes of hard-drive
memory. If there are 10 million agents, one simulation step requires about 1.5 GB and the whole
simulation needs about 30 GB hard-drive storage capacity. As a result, the simulation lasts longer than
12 hours.
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4.3 The communication network

The model’s social structure also affects the communication among agents, which in turn

influences the adoption decision. As done by Schwarz and Ernst (2009), communication

channels between agents are assigned according to the Small-World-Network (SWN) al-

gorithm, which was originally created by Watts and Strogatz (1998). SWNs are based

on the idea that every individual is connected to anyone else through no more than six

degrees of separation (Barabási and Bonabeau, 2003). In addition, SWNs are character-

ized by a high density of connections with short path-lengths, features also shared with

actual social communities. Empirical studies have shown a strong correlation between

the number of contacts in a SWN and the agents’ gender, age, education, and income

(Schwarz, 2007; Zheng et al., 2006).

In the model, the number of communication channels depends on the Sinus-Milieu R©

of the agent. Furthermore, the SWN algorithm has been adjusted in order to account for

the structure of the social system considered. All possible adopters are situated across

the 20 regions and have primarily “localite” links to other agents from the same region.

In addition, most of the communication channels are modeled to take place between

agents belonging to the same socio-economic group (see Table 5). The remaining links

are almost uniquely with agents from bordering Sinus-Milieus R© (see Figure 7). Note that

the network structure (i.e. the links across specific agents) is created in the initialization

of the model and maintained throughout the simulations. However, in order to create an

element of uncertainty, there is a small probability in each simulation run that an agent

will break up a link and randomly reconnect to another agent (see Table 6).22

22For instance, for any of the 6 links to other agents of a Neo-Achiever, there is a 1% chance that the
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Table 5: Probabilities to connect to other agents in own and other Sinus-Milieus R© [%]
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Borghesia Illuminata 85 10 5 0 0 0 0 0
Neo-Achievers 10 75 10 5 0 0 0 0
Progressisti Tolleranti 5 10 70 10 5 0 0 0
Italia Media Ambiziosa 0 5 10 70 10 5 0 0
Tradizionali Conservatori 0 0 5 10 70 10 5 0
Classe Post Operaria 0 0 0 5 10 70 10 5
Edonisti Ribelli 0 0 0 0 5 10 75 10
Consumisti Precari 0 0 0 0 0 5 10 85

Source: Own assumptions, based on Schwarz (2007)

Table 6: Number of communication channels and probability to randomly reconnect
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Number of links 7 6 7 8 6 8 9 10
Probability to reconnect [%] 0.5 1.0 1.0 0.75 0.25 0.5 1.0 0.25

Source: Own assumptions, based on Schwarz (2007)

5 Model calibration

We calibrate the model with respect to the total number of adopters, the rate of adoption,

the installed PV power, and the PV system characteristics over the 2006–2011 period. We

target a close resemblance of the simulation results with the actual PV diffusion process

at the national level. As adjusting the model in order to fit the PV adoption dynamics of

link will be broken and a new connection will be created with another agent.
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Figure 10: Outcome of the calibration for different threshold levels, 2006-2011

Source: Own illustration, based on calibration results

each individual region is particularly difficult, each region is individually calibrated once

the model matches the general national PV diffusion trends.

The calibration is performed by adjusting the values of the utility threshold and

the weights of the partial utilities across the various socio-economic adopter categories.

Changes to the partial utility weights of a specific socio-economic group influence the

slope of the adopter curves of that given agent’s category, thereby affecting their specific

attitude towards the innovation. Changes to the utility threshold, in contrast, shape the

whole level/slope of the curves without affecting specific adopter categories.

Figure 10 shows the results of the calibration for the total number of adopters and

the rate of adoption at the national level. The diagrams illustrate the actual PV market

data and various simulation runs with different thresholds, while all other parameters

are kept constant. The model displays a good fit to the actual number of adopters. The

best results are obtained with a threshold value of 0.539. However, the simulations also

turn out to be rather sensitive to variations in the threshold level. A threshold change of

±0.03 causes a difference in the number of adopters of about ±18%, whereas a change of

±0.06 leads to fluctuations in the ±35% range.

The simulated rate of adoption is less accurate in matching the actual PV statistics.

This is primarily due to the year 2008. In 2008, investment costs were still relatively high

and the introduction of the CE 2, which brought a first reduction in support payments

and led to a fall in the NPV of the PV system as well as a longer payback period. In the

model, PV systems were not as economically appealing as before, which led to a lower
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Figure 11: Calibration of the installed PV capacity, 2006–2011

Source: Own illustration, based on calibration results

number of adopters and a lower adoption rate than displayed in the the actual market.23

Nevertheless, the rate of adoption better resembles the actual values in the following

years (i.e. 2009–2011), thus still capturing a key trend to be picked up for the successful

prediction of the PV market’s future development.

Figure 11 shows the calibration of the total installed PV capacity, the average PV

power per adopter, and the average roof surface area of the PV systems. The achieved

fit is acceptable for all three parameters. Note that the average roof-surface area of PV

systems is assumed to be constant in the model. However, the slightly increasing average

installed PV power per adopter is guaranteed thanks to improving PV module efficiency

over time.

The partial utility weights implemented in the model are shown in Table 7. They

have been determined by trial and error in response to the simulation results during the

calibration. Obviously, there may be other value combinations that could help achieve

similar or better calibration results. Nevertheless, the chosen values lead to a good fit

for most of the Italian regions. Still, it should be explicitly mentioned that the model

responds unevenly to changes to different weights. In particular, the weight of the payback

period has, due to the linear formulation of its partial utility, a stronger impact on the

diffusion process than the other weights. Therefore, the weight coefficients should not be

directly compared to each other and their value should be interpreted as their relative

importance in the adoption decision process.

In addition, the weights have been assigned so as to replicate the allocation of the

23Note that attempts to overcome this issue by altering the weights of the partial utilities across
different adopter categories did not produce significant improvements.
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Table 7: Calibrated weights by Sinus-Milieus R©

Weights wpp wenv winc wcom

Borghesia Illuminata 0.060 0.350 0.300 0.290
Neo-Achievers 0.070 0.350 0.310 0.270
Progressisti Tolleranti 0.150 0.310 0.265 0.275
Italia Media Ambiziosa 0.150 0.310 0.260 0.280
Tradizionali Conservatori 0.140 0.290 0.260 0.310
Classe Post Operaria 0.140 0.310 0.270 0.280
Edonisti Ribelli 0.135 0.310 0.280 0.275
Consumisti Precari 0.125 0.320 0.280 0.275

Source: Calibration results
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Figure 12: Number of adopters by Sinus-Milieu R©, 2006–2011

Source: Own illustration, based on calibration results

Sinus-Milieus R© with respect to Rogers’ (2003) adopter categories presented in Table 4.

Figure 12 shows the number of new adopters in each Sinus-Milieu R© between 2006 and

2011. Initially, the diffusion process is driven mainly by innovators and early adopters

(2006–2008). Later, as the rate of adoption increases, also the average middle class is

participating in the adoption process (2009–2011). As a result, innovators and early

adopters are characterized by higher coefficients for the income and environment weight.

Small coefficients for the payback period weight indicate that innovators are willing to

take more risk. Later adopters are characterized by higher coefficients for the weight of

the payback period, thus stressing their need for financial security.

Figure 13 shows the distribution of the Sinus-Milieus R© over time, regardless of the

adoption status. The calibrated distribution of the socio-economic groups fits almost

perfectly to the reference values observed in real world data, which is given as a share

of households. The milieus are slightly different across the regions and depend on local

socio-demographics. The distribution of the Sinus-Milieus R© changes slightly between
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Figure 13: Distribution of households according to the Sinus-Milieus R©, 2006–2011

Source: Own illustration, based on calibration results

2006 and 2011, but no further changes are assumed to take place in the social system

(see section 4.2).

Finally, it is important to have a closer look at the option to scale the number of

agents implemented in this model and already mentioned in section 4.2. The option

works well for rather large regions of Italy with many inhabitants, for example Veneto

(see Figure 14a). For these regions, the agent scale may be increased up to 80 without

significant effects on the results of the model. In contrast, the fit of the calibration is more

problematic for smaller regions with only few inhabitants, e.g. Molise, when the agent

scale is large (see Figure 14b). The calibration issue arises as the agent scale approaches

or even surpasses the number of agents in one or more categories of the regional social

system.

During the calibration, and in the further scenarios of the model, an agent scale of

15 is used. This value keeps the simulation duration and the required computational

memory small while limiting the calibration error in small regions to a minimum (see

Table 8). As a matter of fact, when focusing on the calibration of the model at the

national level, the “agent scale-error” in the small regions has a negligible influence, since

the number of adopters is comparably small.

6 Scenario analysis and results

After the agent-based diffusion model has been calibrated, it can be used to predict the

future Italian PV market under various scenarios. Three simulation scenarios have been

tested to consider the sensitivity and validity of the model: a Baseline scenario with the

most likely development of the PV market, a scenario with different PV investment costs

(Scenario II), and a policy-driven scenario with varying degrees of future governmental
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Source: Own illustration, calibration results

Table 8: Influence of the agent scale on the durationa of the simulation [s], 2006–2011

Agent scale 5 10 15 20 40 60 80

Venetob 681 342 230 174 91 64 50
Molisec 26 18 16 15 13 12 11

a Simulations performed with a utility adoption threshold of 0.539
b Veneto has about 1.9 to 2.0 million households.
c Molise has about 300 to 320 thousand households.

Source: Calibration results

PV support (Scenario III). All three scenarios build on the parametrization obtained from

the initial calibration.

6.1 Baseline scenario

6.1.1 Description Baseline scenario

The Baseline scenario considers the most likely development of the Italian PV market

from 2012 to 2026. Governmental support is modeled on the current CE 5. The Italian

government has planned to maintain the CE 5 scheme until the end of 2014. Afterwards,

the model assumes that incentives will decrease by 15% every six months. Figure 15

shows the development of the incentive scheme over time.24

24Figure 15 shows the average incentive for PV-generated electricity from systems with an installed
capacity of up to 20 kW of peak power. Extra payments and payments for direct energy consumption
are not included.
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Figure 15: Incentive scheme in the Baseline scenario, 2006–2026

Source: Own illustration, based on MSE (2005, 2007, 2010, 2011, 2012) and own assumptions

Table 9: Cumulative global installed PV power and PV system price developments, 2012–2026

Year 2012 2013 2014 2015 2020 2026

PV power [GW] 77 88 100 125 345 760
System pricea [e/kW] 1,904 1,824 1,750 1,626 1,543 1,021

a VAT excluded. Prices refer to small-scale (1–20 kW) PV systems

Source: EPIA (2011) and own calculations

Besides governmental support, investment costs are probably the second most impor-

tant factor for the future development of the PV market. They play an important role in

the estimation of the “Levelized Cost of Electricity”(LCOE) generation, a measure of the

value of electricity self-generation. The LCOE of a PV system depends on its investment

costs (I0), yearly running costs (Rt), financing conditions (i.e. the interest rate i), energy

output (EP V ), and economic lifetime (n) of the technology (Kost et al., 2012). The LCOE

for new PV systems equals the ratio of the total costs of a PV system to the total energy

produced over the lifetime of the PV system, measured as:

LCOE =

I0 +
n
∑

t=1

Rt

(1 + i)t

n
∑

t=1

EP V

(1 + i)t

(15)

Usually, the dominant component of the LCOE of a PV system are its investment

costs. About half of the investment costs of a PV system are due to the modules’ price,

the other half is due to the inverter, cables, monitoring systems, and the installation
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costs (Wirth, 2012).25 The reduction in PV system prices over time can be ascribed

to economies of scale as well as learning effects and improvements in efficiency due to

research and development activities (Wirth, 2012; EPIA, 2011). Their cost evolution

has often been modeled via experience curves (for a literature overview, see van Sark

et al., 2010). Here, we also model the evolution of the PV system price (It) at time t

by forecasting the price per installed kW power of the system (pP V (t)) with a one-factor

experience curve (see also eqs. (3)–(5)). More specifically, it is assumed that pP V (t) is a

function of the global cumulative PV power (ACC(t)), the experience parameter (−b),

the price of the system in the base year (pP V (t0)) and the global cumulative installed

capacity in the base year (ACC(t0)). The price of the system per installed kW power at

the time t is then given by:

pP V (t) = pP V (t0) ·

(

ACC(t)

ACC(t0)

)−b

(16)

LR = 1 − 2−b (17)

The model implements a learning rate (LR) of 20% until 2020, followed by a reduced rate

of 18% until 2026 (EPIA, 2011). Data for the global cumulative installed PV capacity

until 2026 are taken from EPIA (2011). The associated PV system price evolution and

the cumulative installed capacity are given in Table 6.1.1.

Besides the price per kW, additional assumptions are necessary to estimate changes

in the LCOE of a PV system over time. According to Kost et al. (2012), the maintenance

cost of a photovoltaic system increases every year by about 2%, with a starting value of

circa 1.3% of the initial investment. The intertemporal value of money is discounted at an

interest rate of 6% (i in eqs. (3) and (15)). In addition, the PV investment is financed by

borrowing 70% of the required capital at an interest of 5%. The energy output depends

on the region where the PV system is located. Degradation of the PV system is also

taken into account and amounts to about 0.3% per year (Kost et al., 2012). In addition,

the efficiency of the PV panels is assumed to improve with linear increments by 1.5% per

year, which leads to an efficiency increase from 13.5% in 2013 to 16.9% in 2026. Similarly,

electricity prices are growing linearly by about 2% per year (Kost et al., 2012).

6.1.2 Results Baseline scenario

The Baseline scenario indicates a stagnation of the diffusion process in all regions. The

inflection point of the diffusion process is very distinct and takes place in 2012 (Figure 16).

After the rate of adoption reaches its maximum, the number of new adopters decreases

quickly from about 280,000 in 2012 to about 6,500 in 2021.

This outcome seems to be consistent with real-world data. According to the latest

25Also known as Balance of System (BOS) components.
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Figure 16: PV diffusion in the Baseline scenario, 2006-2026

Source: Own illustration, based on simulation results

PV report (GSE, 2013a), the cumulative adoption of PV systems is still growing, but

it is slowing down. Between 2007 and 2011, the number of PV installations more than

doubled every year. In 2012, for the first time, the total number of new installations was

lower than in the previous year. Installed capacity, while still increasing, has also been

growing at a slower pace. Between 2010 and 2011, installed capacity grew by 269%, with

a marked increase in the average PV system size from 22 to 38.7 kW. Between 2011 and

2012, installed capacity grew by 29%. Similarly, the average size of newly installed PV

systems steadily increased between 2007 and 201126, while in 2012 this indicator dropped

to values lower than those of 2010. While our simulation results might overestimate the

decrease in PV diffusion, the model still seems to capture the recent slow-down of the

investments and trend that, also due to the currently unfavorable economic conditions,

may be persistent.

The simulation results can be better contextualized with the help of the prediction

scenarios proposed by other studies. EPIA (2012), for instance, estimates27 a cumulative

installed PV capacity in Italy of 23,000 MW by 2016. Our model estimates the cumulative

installed capacity of small PV systems at about 4,400 MW in 2016, which corresponds

to a share of about 19.0% of the total in that year. This number is consistent with the

actual share of 15.5% in 2011.28

26Note that there was a jump in the average size of newly installed plants in 2011. This change is
probably also due to the activation of several large-scale PV plants.

27We refer to their “moderate scenario”. In their “policy-driven” scenario, EPIA (2012) estimate a
total installed capacity of 30,800 MW in 2016.

28If we used EPIA’s (2012) “policy-driven” scenario, the actual share of domestic installed PV capacity
drops to 14.3%.
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Figure 17: Average values of key economic indicators in the Baseline scenario, 2006–2026

Source: Own illustration, based on simulation results

A more detailed analysis of the simulated average NPV values of the PV system helps

to better explain the results of the model (see Figure 17). At the beginning of 2006,

PV systems were not profitable. Thanks to the introduction of government support and

decreasing investment costs, the average NPV of photovoltaics grew steadily until 2012,

when it reached a value of about e15,000.29 However, starting already in 2011, the

incentive scheme has been reduced dramatically. As a consequence, the average NPV

decreases to e6,534 by 2019. Moreover, the CE 5 has changed the calculation method for

the clearance balance30 of direct PV electricity consumption. According to TIS Innovation

Park (2012), the Italian government made this change on purpose, in order to support

direct electricity consumption more strongly. As a result of the support scheme changes,

the PV system owner needs an electricity storage component for his PV system to receive

the benefit payments. The model, however, does not simulate any such components.31

29We always refer to small PV systems up to 20 kW of peak power.
30Refers to the savings summand (Rsave(t, CE)) in the PV systems’ cash flow (see eq. 6).
31The inclusion of a storage capacity would significantly alter the NPV valuation of the system. In

addition, it would complicate the decision as to when to consume and when to feed-in the self-generated
electricity.
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Figure 18: Influence of the different weighted partial utilities in the Baseline scenario

Source: Simulation results

Interestingly, the rate of adoption and the NPV of the system increase again from

2021 to 2026. The decline in investment costs eventually makes the PV system economi-

cally profitable again, despite the small remaining governmental support32. The average

investment costs, which depend on the given PV system price (Table 6.1.1), are the most

important component for the estimation of the production costs of the self-generated

electricity. As shown in Figure 17, the model predicts grid parity 33 in 2010. This result

corresponds to the actual point in time when residential grid parity was achieved in Italy

(Breyer and Gerlach, 2013), thus confirming the good parametrization of the model. After

grid parity is reached, the model predicts further reductions in PV electricity production

costs, which is in accordance with the assumed decrease in the investment costs and the

values forecasted by Breyer and Gerlach (2013).

Understanding the results of the Baseline scenario requires also a closer look at the

innovation-decision process of the model. Figure 18 displays the average share of weighted

partial utilities of the calibrated model as a function of time. The diagram includes all

agents’ utilities, regardless of whether they are adopters or not. As one can see, the

influence of the communication network is negligible during the calibration phase and

increases only marginally from 2010 to 2013. Afterwards, the influence of communication

remains constant. The influence of the households’ income and the importance of envi-

ronmental concerns decrease as PV diffusion expands until 2011. In contrast, the share

of weight of the payback period increases between 2006-2012, which can be explained by

its linear influence on the partial utility, as well as by the strong increase in the NPV in

the first years of the simulation.

32The average payback period follows a curve that is the inverse of the NPV curve, and thus its shape
and evolution over time may be explained in a similar way.

33Grid parity takes place when electricity from the grid and self-generated PV electricity (i.e., LCOE)
have equal production costs.
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Overall, the model leads to stable and reproducible simulation results, which never-

theless may be questioned. Especially the influence of each partial utility could have been

designed in a different way. However, it seems reasonable that communication networks

have a rather small influence on the adoption decision, since the share of adopters to the

total agent population remains small across the entire simulation period (max. of 6.6%

in 2026). Increasing the weight of the communication utility has little to no influence

on the outcome of the model. Communication is therefore not likely to be the driving

force behind the diffusion process. Since environmental and income effects do not change

much over time, they are also not likely to play a leading role for a potential increment

in the diffusion process. The only aspect that may lead to and maintain a high rate of

adoption is the economic profitability of the PV system. In order to analyze the model’s

response to different NPV valuations, the following two scenarios further elaborate on

governmental PV support and the price of the PV system.

6.2 Scenario II - Changes to the Support Policy

6.2.1 Description Scenario II

In this scenario, two alternative governmental incentive schemes are implemented. The

Baseline scenario is used as a reference for comparisons. Changes to the support scheme

take place from 2015 onwards. While the Baseline scenario considers a decrease in incen-

tives of 15% every six months, here in Scenario II the incentives are reduced by 5% and

25%, respectively. The reduction in the incentive payments leads to an end of govern-

mental support before the last simulation year. The alternative with stronger incentives,

instead, guarantees governmental support until 2026 and beyond. Figure 19 displays the

alternative support schemes simulated.

6.2.2 Results Scenario II

The gradual reductions in the incentive scheme by only 5% increase the number of

adopters. Cutting back the incentives by 25% does not contribute to significant dif-

ferences in the results compared to the Baseline scenario. Both the Baseline scenario

and the “weaker incentive” alternative hardly have new adopters between 2015 and 2026.

In contrast, the “stronger incentive” program leads to 36% more adopters by the end of

2026 (1,145,900 households) compared to the reference case. Similarly, the cumulative

installed PV power increases to 7,900 MW, compared to 4,400 MW in the baseline case.34

Higher incentives secure a shorter payback period of the investment and incentivizes, from

2015 onwards, at least 31,000 new adopters per year. Nevertheless, the “PV boom” that

characterized the 2009–2012 period could not be replicated.

34The individual regions show similar characteristics as the whole nation and are not further analyzed.
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Figure 19: Alternative incentives for the future PV support scheme in Scenario II, 2006–2026

Source: Own assumptions and illustration, based on Conto Energia 5
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Figure 20: PV diffusion results in Scenario II, 2006–2026

Source: Own illustration, based on simulation results

The two alternative incentive schemes have a strong impact on the NPV and the

payback time of the PV system (see Figure 21). Lower incentives contribute to a drop

in the NPV value, which decreases to e5,240 in 2018, and then increases again till the

end of the simulation period. By 2026, the reduced governmental support scenario shows

almost the same NPV as the Baseline scenario. The NPV growth after 2018 is due to

decreasing PV investment costs, as it is the case for the baseline simulation. Since in the

reference case and in the low incentive alternative the monetary incentives are small and
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Figure 21: Average values of key economic indicators in Scenario II, 2006–2026

Source: Own illustration, based on simulation results

decreasing, the PV price has a stronger influence on the NPV value35. On the contrary,

the stronger incentive scheme leads to an almost linearly increasing NPV from 2015 till

the end of the simulation period. The final NPV in 2026 is about e11,890.

Besides the two alternative incentive schemes presented here, other governmental

support programs have been tested to explore the “boundary behavior” of the model.

Cutting off the incentives totally in January 2013 leads to a result similar to the one

obtained with weaker incentives. Maintaining the governmental payments of December

2012 throughout the remaining simulation runs also leads to a similar turning point in

the rate of adoption as the one obtained with the “higher incentive” scheme, though the

NPV in 2026 is higher. In general, the simulations show that the adoption behavior of the

agents can be strongly influenced by the incentive scheme adopted by the government.

Small to no incentives lead to a stagnation of the diffusion process. Strong incentive

programs, in contrast, rapidly accelerate the diffusion dynamics.

6.3 Scenario III - Changes to the Investment Costs

6.3.1 Description Scenario III

The third scenario simulates two alternative PV system price developments. Both alter-

natives are derived from the experience curve model adopted for the PV system price

forecast (see eqs. (16)–(17)). The learning rates are kept constant for different estimates

35As shown in eq. (3), investment costs in the NPV calculation correspond to a single down pay-
ment, while the cash flows (including the support incentives) are discounted over time. As a result, the
investment costs have a much stronger direct influence on the final value of the NPV estimation.
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Table 10: Forecasted investment costs in Scenario III, 2012–2026

Year 2012 2013 2014 2015 2020 2026

Low PV price [e/kW] 1,904 1,736 1,615 1,524 967 842
Change relative to baseline [%] 0 -4.8 -7.7 -6.2 -17.6 -17.6

High PV price [e/kW] 1,904 1,833 1,784 1,749 1,543 1,342
Change relative to baseline [%] 0 +0.5 +1.9 +7.6 +31.4 +31.4

Source: EPIA (2011)
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Figure 22: PV diffusion results in Scenario III, 2006–2026

Source: Own illustration, based on simulation results

of cumulative global installed PV capacity. For the prediction of the cumulative installed

PV capacity, EPIA (2011) provides two additional scenarios based on an optimistic or a

pessimistic outlook regarding future PV market development. Table 10 lists these invest-

ment cost projections as “low” and “high” PV system price alternatives. Moreover, the

table shows the percentage change in relation to the original baseline investment costs.

6.3.2 Results Scenario III

The results indicate clear differences relative to the Baseline scenario. An incremental

reduction in the investment costs of up to 17.6% by 2026 leads to an increase in the

total number of adopters by 26.1% to about 1,062,540 households. The share of adopters

corresponds to about 8.3% of the total agent population. The higher number of adopters

also raises the total installed PV capacity to 7,300 MW. In contrast, the pessimistic

scenario regarding investment costs stops the diffusion process. The rate of adoption be-

comes almost zero and the number of total adopters remains constant from 2013 onwards.
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Figure 23: Average values of key economic indicators in Scenario III, 2006–2026

Source: Own simulation, based on simulation results

Compared to the Baseline scenario, this alternative has 11.7% less adopters in 2026 and

a total PV power of only 5,100 MW.36

The simulation outcome may be explained by looking at the relevant economic param-

eters that drive the diffusion process of the PV system (Figure 23). Higher investment

costs bring about a decrease in the NPV by 29.3% until 2026. A decrease in the PV price

by 17.6%, in contrast, increases the NPV by 16.0% at the end of the simulation. The

payback period of the PV system and the cost of self-produced electricity follow similar

paths.

By comparing the results of Scenario II and Scenario III, it may be argued that

both governmental incentives and the evolution of the PV system price have a significant

influence on the adoption process. Based on the simulations’ outcome, the scenario with

the highest incentive scheme obtained the largest technology adoption. Obviously, a one-

to-one comparison of the two scenarios is hindered by the many assumptions made. In

particular, the PV system price is assumed to depend on the success of PV adoption

at a global scale, not forgetting the imputed economies of scale and learning effects

36For both alternatives, the individual regions show similar characteristics and are not further analyzed.
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of the experience curve model. In contrast, incentives can be used more flexibly, as

they are directly determined by government policy. As a result, though more expensive

to taxpayers, they are a better controllable option to accelerate the diffusion of PV

technology.

7 Conclusion

While the expansion of large PV sytems may continue, Italy’s domestic37 PV installations

have already surpassed an initial phase of rapid growth and, although likely to spread

further, they are expected to do so at a significantly slower rate. According to the simu-

lation results, the number of new households adopting photovoltaic technology stagnates

under the current support scheme.

In an attempt to adequately account for the complexity of the actual diffusion pro-

cess of the PV technology, we implement an agent-based model that incorporates four

elements influencing the adoption decision: the economic profitability of the investment,

environmental considerations, a household’s income, and the impact of communication

networks. To do so, the model structures the social system into socio-economic classes

(Sinus-Milieus R©). In total, 150 categories across 20 regions have been implemented by

distinguishing between age classes, the level of education, and the household type.

Despite the multiple factors interacting simultaneously, the model simulates repro-

ducible and reasonable results that are in line with observed data over the 2006–2011

period. Overall, the calibration of the model proved to be relatively easy to handle by

varying the weights of the innovation-decision process and the utility threshold. The

projected diffusion can therefore be evaluated by altering key parameters driving the

outcome of the model.

As one might expect, it has been shown that the economic profitability of the invest-

ment is the most influential criterion in the adoption decision. As a result, we examined

in greater detail the two parameters that most influence it: alternative governmental

support schemes and variations in the PV system’s investment costs. Compared to the

Baseline scenario, a steeper reduction in the support payments would stop the diffusion

process at once. On the contrary, a more gentle step-wise decline in the incentive scheme

would ensure a greater diffusion of the PV technology. Nevetherless, in the simulation

results, the adoption rate that characterized the initial diffusion is never replicated under

the latest support policy scheme. A similar outcome is obtained with variations in the

expected evolution of the PV investment costs. In general, it may be argued that direct

governmental support is more costly to taxpayers, but it is a relatively safe option to

ensure a speedier diffusion of photovoltaic technology among private homeowners.

37In the model, the agent population contains only households living in single- or two-family houses;
hence, only the diffusion of small residential PV systems of up to 20 kW power is considered.
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Interestingly, the model managed to accurately predict when grid parity is reached

in the Italian market. The model also indicates that self-produced electricity becomes

increasingly more advantageous over time. However, Italy witnessed a boom in PV

adoption under the influence of strong governmental incentives. Relatively high NPV

values were associated with the fast diffusion of the technology. As a result, despite the

decline in investment costs and the increasing benefits associated with PV electricity self-

generation and direct consumption, the agents do not manage to replicate the profitability

levels witnessed during the initial PV boom due the significant reduction in support

granted by the government. Under the assumption that the preferences of investors

will not significantly change over time, the lower profitability of PV systems ultimately

explains the reduction in new adoption following the introduction of the new support

scheme. Environmental concerns and communication also play an important role, but

they are not nearly as significant as economic considerations.

Obviously, the model is built on a number of simplifications and assumptions that

fundamentally put into question the validity of its predictions. In particular, as already

mentioned, the model is suspiciously sensible to changes in the utility threshold param-

eter. Small changes in values contribute to strong changes in the diffusion process. In

addition, the categorization according to Sinus-Milieus R© is an effective way to represent

the multi-faceted aspects of the current social structure. However, its parametrization

in the model was rather ad-hoc and not substantiated by verifiable empirical research.

While keeping these points in mind, which are shared by many forecasting frameworks,

the model’s ability to match the actual diffusion of PV systems in Italy at both the

national and regional level are encouraging signs of its potential. Furthermore, the appli-

cability of the proposed framework to other countries and, with small changes, to other

renewable energy technologies, calls for future implementations with an improved set of

underlying parameters.
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