Automation, Interoperability and Resilience


The Smart Grid and, more generally, power systems, are examples of complex adaptive systems. A coupled infrastructure of electric, communication, and other networks is built and operated to provide electric energy to consumer with a high reliability. However, heterogeneous components in these networks, mutual interdependencies and numerous different interactions between components pose a constant challenge to this goal. The continuous integration of new technologies and protocols as well as novel approaches for grid operation add to this challenge. Our team is dedicated to address these challenges by

  • Investigating algorithms for Fault Localization, Isolation and Service Restoration, as well as fault-tolerant control approaches, for self-healing grids
  • Evaluating reliability and resiliency of power systems based on Complex Network Analysis and stochastic modelling
  • Applying Global Sensitivity Analysis to identify critical components and investigate the propagation of uncertainty
  • Design experiments for interoperability testing

Team Leader: Amir Ahmadifar


Research Projects of the Team




Int:net is a project funded from the European Union’s Horizon Europe research and innovation program, which aims at establishing a formal, self-operated Interoperability Network for the Energy Transition. As main pillar of the European coordination and support measures, int:net will lay the basis for a European interoperability ecosystem that includes academia, industry, Standards Developing Organizations, policy, regulation, and alliances. More



The four years project HYPERRIDE, starting on 1st October 2020, contributes to the field implementation of DC and hybrid AC-DC grids. Starting with the definition of most relevant fields of application for DC grids (local microgrids, grid enforcement to overcome congestions, coupling of AC grid sections, etc.), the enabling technologies will be specified in detail on different levels. More



Platone is a H2020 European Project, which aims at defining new approaches to increase the observability of renewable energy resources and of the less predictable loads while exploiting their flexibility. Platone will develop advanced management platforms to unlock grid flexibility and realize an open and non-discriminatory market, linking users, aggregators, and operators. The solutions developed in the project will be tested in European field trials as well as in the ACS laboratory. More